
         Corresponding Author: drismail664@gmail.com 

        10.22105/SA.2021.281500.1061      

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1|Introduction    

There are barely few works in the topic of transient/non-stationary analysis that falls into the categories of 

simulative approaches, combined with other applied strategies, covering a range of methods for researching 

systems that undergo temporal change, such as using simulations, examining non-stationary phenomena, and 

examining transient behaviour. In certain situations, a closed form statement for the analysis of non-stationary 

queueing systems can be obtained by mathematical transformations. 

On the other hand, computing these expressions can be difficult. The focus now is on quantitatively 

determining the transient behaviour of these types of systems rather than on developing closed form formulas. 

The current exposition helps to answer the long-standing unsolved issue of acquiring the time-varying M/D/1 

queueing system's state variable for the first time ever.  

The sequence that follows demonstrates how this paper is structured. 
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Abstract 
For a long-standing solution via simulation, this study presents the first-ever analytic modelling for the Pointwise 

Stationary Fluid Flow Approximation (PSFFA) model of the non-stationary M/D/1 queueing system. This is 

accomplished by putting out the constant ratio β (Ismail’s ratio), which provides a precise analytical answer and links 

the time-dependent mean arrival and mean service rates. We then do a numerical analysis of the stability dynamics of 

the time-varying  M/D/1 queueing system with respect to time β and the queueing parameters. Applications of 

Pointwise Fluid Flow Approximation (PSFFA) to the Internet of Things are given. A summary and recommendations 

for further research round out the paper.  
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I. Pointwise Stationary Fluid Flow Approximation (PSFFA). 

II. Solving PSFFA model of the non-stationary M/D/1 queue. 

III. PSFFA applications to IoT. 

IV. Closing remarks with next phase of research. 

2|Pointwise Stationary Fluid Flow Approximation (PSFFA) 

Let fin(t) and fout(t) serve as the temporal flow in, and flow out, respectively. Thus, 

fout(t)  links server utilization,  ρ(t) and the time-dependent mean service rate, μ(t) by 

For an infite queue waiting space: 

Thus (2) rewrites to: 

The stability phase of (4) (i.e., x.(t) =   0), implies: 

The numerical invertibility of  G1(ρ), yields 

Hence,  

The M/D/1 queueing system is made of Poisson arrival, one exponential (Poisson) server, FIFO (First-In-

First-Out). Thus,  M/D/1 queueing system’s -G1 (c.f.,[1]) reads: 

Accordingly, the resulting PSFFA model is: 

Non-staionary queues’ life example [2] is depicted by  Fig. 1. 

dx(t)

dt
= x.(t) =   −fout(t) + fin(t), x(t)as the state variable. (1) 

fout(t) =  μ(t)ρ(t). (2) 

fin(t) =  Mean arrival rate = 𝜆(𝑡). (3) 

x.(t) =   −μ(t)ρ(t) +  λ(t) , 1 > ρ(t) =
λ(t) 

μ(t)
 > 0. (4) 

x = G1(ρ). (5) 

ρ =  G1
−1(x). (6) 

x.(t) =   −μ(t) (G1
−1(x(t))) +  λ(t). (7) 

G1(x) =  ((x + 1) − √(x
2 + 1)). (8) 

x. = −μ((x + 1) − √(x2 + 1)) + λ. (9) 
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Fig. 1. Non-staionary queues’ life example [2]. 

3|Solving The Non-Stationary 𝐌/𝐃/𝟏 Queueing System’s Psffa 

Theorem 1. The analytic solution of Eq. (9), using Ismail’s ration, 𝛽  is 

Proof: We have  

Let, then x. = −y. cothy cschy. Setting, β =
λ(t)

μ(t)
. Thus, we have 

Therefore, we have 

where 

Let 

(x − β(x + 1))
1

(1−β)2 = γe
[
(x+1)

(1−β)
− ∫ μ(t)dt]

   , β =  
λ(t)

μ(t)
. (10) 

x. = −μ((x + 1) − √(x2 + 1)) + λ. 
(c.f., 

(9)) 

−y. cothy cschy = −μ((1 + cschy) − cothy) + λ = −μ[(1 + cschy) − cothy) − β]. (11) 

−cothy cschydy

[(1 + cschy) − cothy) − β]
= −μdt  =  

coshydy

[−(1 + sinhy − coshy)+ βsinhy]sinhy
. (12) 

2
β (e

3y + ey)dy

[e2y −
ey

β + (
2
β − 1)

] (e2y − 1)
= −μdt.  

e2y −
ey

β
+ (
2

β
− 1) = 0 ⟹ ey = a, b,  

a =

(
1
β +√(

1
β2
−
8
β + 4))

2
, b =  

(
1
β − √(

1
β2
−
8
β + 4))

2
. 

 

2
β (e

3y + ey)

[e2y −
ey

β + (
2
β − 1)

] (e2y − 1)
=

A

(ey − a)
+

B

(ey − b)
+

C

(ey − 1)
+

D

(ey + 1)
. (13) 
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Hence, it is implied that 

Thus, D equals 

C =
4
β
(
2
β
+ a) −

2b
β
[(1 +

2
β
+ 2a) − (ab − (a + b)) (

2
β
+ a)] +

4a
β
(
2
β
+ a)](ab −

b (1 +
2
β
)

(
2
β
+ a)

+ a [
(1 − a)

(
2
β
+ a)

])

(ab + b [
b (1 +

2
β
+ 2a) + a(1 − a)

(
2
β
+ a)

]
2
β
+ a + [ab − (a + b)] (

2
β
+ a) + a(ab −

b (1 +
2
β
)

(
2
β
+ a)

+ a [
(1 − a)

(
2
β
+ a)

]) [(1 +
2
β
+ 2a) − (ab − (a + b)) (

2
β
+ a)]

(
2
β
) + a + [ab − (a + b)] (

2
β
+ a)

). 

This finally solves the complicated mathematical computations to obtain 

This transforms to the final required closed form solution: 

Since, 

With the domain of real line with zero removed Thus, one gets 

Corollary 1. As x(t) → 0, we have 

A + B + C + D =
2

β
 ⟹A =

2

β
− (B + C + D).  

∴ B =
(1 − a)(C − D)

(
2
β + a)

. (14) 

(

 
 
 
 
 

2b
β
+ a(ab −

b (1 +
2
β
)

(
2
β
+ a)

+ a [
(1 − a)

(
2
β
+ a)

]) [

4
β
(
2
β
+ a)

(
2
β
) + a + [ab − (a + b)] (

2
β
+ a)

]

(ab + b [
(1 +

2
β
+ 2a)

(
2
β
+ a)

] + a [
(1 − a)

(
2
β
+ a)

]) + a(ab −
b(1 +

2
β
)

(
2
β
+ a)

+ a [
(1 − a)

(
2
β
+ a)

]) [
(1 +

2
β
+ 2a) − (ab − (a + b)) (

2
β
+ a)]

(
2
β
) + a + [ab − (a + b)] (

2
β
+ a)

)

)

 
 
 
 
 

. (15) 

[(1 +
2

β
+ 2a) − (ab − (a + b))(

2

β
+ a)] = (16) 

A = 
2

β
−
(1+

2

β
)C

(
2

β
+a)

−
(1+

2

β
+2a)D

(
2

β
+a)

, B =
(1−a)(C−D)

(
2

β
+a)

. (17) 

|(1 − ae−y)|A|(1 − be−y)|𝐁|(1 − e−y)|C

(1 + e−y)D
= ηe−∫ μdt, η > 0. (18) 

|(1 − ae−csch
−1(x))|A|(1 − be−csch

−1(x))|𝐁|(1 − e−csch
−1(x))|C

(1 + e−csch
−1(x))

D = ηe−∫ μdt. (19) 

csch−1(x) = l n(
1 + √1 + x2

x
). (20) 

(| (1 −
𝑎𝑥

1 + √1 + 𝑥2
) |)𝑨 (| (1 −

𝑏𝑥

1 + √1 + 𝑥2
) |)

𝐵

(| (1 −
𝑥

1 + √(1 + 𝑥2)
) |)𝐶

(1 +
𝑥

1 + √(1 + 𝑥2)
)

𝐷 = 𝜂𝑒−∫ 𝜇𝑑𝑡 . (21) 
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Implying 

Corollary 2. As x(t) → ∞, we have 

Numerical experiment one 

Let β = 2 , then a =  0.5 , b =  0 , η = 1, μ(t) =  t, A = −7.923076923, B = 1.846153846, C =  6, D =

0.4615384615. 

We have 

 

 

 

 

 

ηe−∫ μdt = limx(t)→0

(|1−
ax

1 + √1 + x2
|)
𝐀

(|(1 −
bx

1 + √(1+ x2)
) |)

𝐁

(|1−
x

1 + √1 + x2
|)
C

(1 +
x

1 + √(1+ x2)
)

D = 1.  

∫ μdt = lnγ. (22) 

ηe−∫ μdt =  limx(t)→∞

(|1 −
ax

1 + √1 + x2
|)
𝐀

(| (1 −
bx

1 + √(1 + x2)
) |)

𝐁

(|1 −
x

1 + √1 + x2
|)
C

(1 +
x

1 + √(1 + x2)
)

D  

=  limx(t)→∞
(

 |1 −
a

1
x +

√1 + (
1
x)
2
|

)

 

𝐀

(1+
1

1
x + √(1 + (

1
x)
2)
)

D

(

 
 
(|(1−

b

1
x + √(1+ (

1
x)
2)
) |)

𝐁

(

 |1 −
1

1
x +

√1+ (
1
x)
2
|

)

 

C

)

 
 

 

= 

(|1−a|)𝐀(|(1−b)|)𝐁

(

 
 
|1−

1

1
x
+√1+(

1
x)
2
|

)

 
 

C

(1+
1

1
x
+√(1+(

1
x
)2)
)

D  = 0  → ∫ μdt → ∞. 

(23) 

√2

(|(1 −
0.5x

1 + √1 + x2
)|)

−7.923076923

(|(1 − 
x

1 + √1 + x2
)|)

6

(1 +
x

1 + √1 + x2
)
0.4615384615 ] =  t.  
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Fig. 2. A new phenomenon for queuing theorists. 

Fig. 2 shows a new phenomenon for queuing theorists. The possibility that time will converge to a certain 

value for sufficiently large number in the time varying M/D/1 queuing system. This is for an increasing 

temporal meanservice rate. This shows that as the time varying M/D/1  queuing  system’s state variable 

becomes sufficiently large, time vanishes. 

Numerical experiment two 

Let β = 2 , then a =  0.5 , b =  0 , η = 1, μ(t) =  
1

t
, A = −7.923076923, B = 1.846153846, C =  6, D =

0.4615384615. 

 We have 

Fig. 3. A new phenomenon for queuing theorists. 

Fig. 3 visualizes a new phenomenon to queuing theorist. The possibility that time will converge to a certain 

value for sufficiently large number in the time varying M/D/1 queuing system. This is for a decreasing 

temporal mean service rate.  
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  4|Some Psffa Applications To Iot 

By describing how vehicles in a platoon use 802.11p communication to exchange messages and change their 

movement characteristics at intersections, a time-dependent model for assessing the platooning 

communications’ effectiveness  at   intersections phase was thoroughly investigated [3].  

The model evaluates the effectiveness of platooning communications and addresses potential safety concerns 

by considering variables including vehicle behaviors, traffic signals, and the changing connectivity among 

vehicles. The authors [3] used PSFFA to describe the transmission queue’s dynamic behaviour in platooning 

communications. They also create models that characterize the continuous backoff freeze and four Access 

Categories (ACs) of 802.11p as they relate to the time-dependent access procedure. For 802.11p 

communication in platooning situations at junctions, the authors created models. [3] consider continual 

backoff freezing and use the PSFFA to describe the  gearbox queue’s dynamic behaviour. The access  process 

with its four ACs, also use a z-domain linear model was demonstrated by [3]. Figs 4.a-4.c and Figs 5.a-5.c, 

respectively, show the time-dependent packet transmission delay and packet delivery ratio of four Acs. 

a. 

b. 
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c. 

Fig. 4. The packet transmission delay that is time dependent. A left turn, a 

straight shot, or a right turn, respectively [3]. 

 

a. 

 b. 
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c. 

Fig. 5. The proportion of time-dependent packet deliveries [3]. 

The findings of a study [4] into the variables influencing queue utilization dynamics on routers in 

telecommunication networks. The investigation shows that the average queue length reaches a steady state 

value following a transient process lasting from a few to tens of seconds when utilizing a dynamic model, 

specifically PSFFA. It is advised to calculate the average queue length using steady state estimations only after 

the transient process has finished and a more precise differential model may be used.  

To accurately predict the average queue length while analysing the average queue length and Quality of Service 

[4] in a network, a dynamic model with a nonlinear differential equation must be used. Only when the transient 

process has ended, and the length of the transient process is controlled by variables like flow rate, router 

interface capacity, and service discipline, are steady-state estimations useful for determining the average queue 

length. A better choice of queuing models and smaller packet sizes can further hasten the average queue 

length's convergence 

 5|Closing Remarks With Next Phase of Research 

More specifically, the state variable of the underlying queue is found in this paper, which addresses a difficult 

problem in queueing theory. To formulate the non-stationary M/D/1 queueing system, the article provides a 

solution to this problem by using a PSFFA method. Applications of non-stationary queues in various scientific 

disciplines and open research problems will be the focus of future effort. Together with queueing parameters, 

the study also looks at how time affects the stability dynamics of the underlying queue. More fundamentally, 

some interesting PSFFA applications to IoT are provided.  Future work involves further investigation of the 

impact of σ(t), 1 > σ(t) > 0 on the stability of G/M/1 PSFFA theory. 
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