Facility Layout Design, Simulation, and Optimization for Kaolin Beneficiation Plant Using FLEXSIM

Authors

  • Iyenagbe Benjamin Ugheoke Mechanical Engineering Department, University of Abuja https://orcid.org/0000-0002-7579-9297
  • Abdulhakeem Hassan Nurudeen Department of Mechanical Engineering, University of Abuja, Nigeria https://orcid.org/0000-0002-9624-8224
  • Ishaya Musa Dagwa Mechanical Engineering Department, University of Abuja, Nigeria.
  • Ibrahim Dauda Muhammad Department of Mechanical Engineering, University of Abuja, Nigeria

Keywords:

Facility layout, SLP, Flexsim simulation, Kaolin ore beneficiation

Abstract

Nigeria has huge deposits of kaolin spread across the country. Yet, Kaolin and its derivates cost Nigeria around 14 million USD annually with diverse industrial applications such as the manufacturing of paper, ceramics, cosmetics, medicine, paints, and porcelain. This loss of revenue is due to the under tapping of the mineral because of the absence of beneficiation plants. Currently, the mining is largely done crudely by artisan miners. Implementation of modern manufacturing infrastructure require adequate attention to cater to facilities layout and future improvements, reduce costs, improve customer satisfaction, space utilization etc. Simulation exercises proffer solutions to these problems in a virtual environment. This work reports a proposed facility layout design for kaolin beneficiation. The proposed plant was designed using Systematic Layout Planning (SLP) methodology and tested using FLEXSIM Simulation software to optimize the production capacity of the plant. The results from the design showed that the optimized production plant had an annual production capacity of 95,328 tons, which was higher than the initial layout with 69,120 tons per annum. The workstations utilization for the optimized layout showed better results than the initial layout design, with the optimized results showing improvements in the efficiency of the workstations as follows (after the simulation): fluid mixer1 had 73.77%, sedimentation tank had 18.44%, rotary drum dryer had 18.44%, packaging line had 63.87%, Screener_washer had 74.46%, and magnetic separator has 63.94% utilization.

Author Biographies

  • Iyenagbe Benjamin Ugheoke, Mechanical Engineering Department, University of Abuja

    Professor of Materials and Production Engineering, Mechanical Engineering Department, University of Abuja, Nigeria

  • Abdulhakeem Hassan Nurudeen, Department of Mechanical Engineering, University of Abuja, Nigeria

    Abdulhakeem Hassan Nurudeen is Lecturer and a PhD student of the Department of Mechanical Engineering, University of Abuja, Nigeria

  • Ishaya Musa Dagwa, Mechanical Engineering Department, University of Abuja, Nigeria.

    Ishaya Musa Dagwa is a Professor Manufacturing Engineering, Mechanical Engineering Department, University of Abuja, Nigeria.

  • Ibrahim Dauda Muhammad, Department of Mechanical Engineering, University of Abuja, Nigeria

    Ibrahim Dauda Muhammad is a Professor of Production and Industrial Engineering, Department of Mechanical Engineering, University of Abuja, Nigeria

References

‎[1] ‎ Sadar, M. P., Rajmore, K. G., Rodge, M. K., & Kumar, K. (2023). Digital manufacturing approach for ‎process simulation and layout optimization. Materials today: proceedings, 74, 642–649. DOI: ‎‎10.1016/j.matpr.2022.10.003‎

‎[2] ‎ Zhang, Z., Wang, X., Wang, X., Cui, F., & Cheng, H. (2019). A simulation-based approach for plant ‎layout design and production planning. Journal of ambient intelligence and humanized computing, 10(3), ‎‎1217–1230. DOI: 10.1007/s12652-018-0687-5‎

‎[3] ‎ Shaker Abualsaud, A., Ahmed Alhosani, A., Youssef Mohamad, A., Nasser Al Eid, F., & Alsyouf, I. ‎‎(2019). Using six sigma dmaic methodology to develop a facility layout for a new production line [presentation]. ‎‎2019 8th international conference on modeling simulation and applied optimization, icmsao 2019 (pp. ‎‎1–5). DOI: 10.1109/ICMSAO.2019.8880335‎

‎[4] ‎ Nenzhelele, T., Trimble, J. A., Swanepoel, J. A., & Kanakana-Katumba, M. G. (2023). MCDM model for ‎evaluating and selecting the optimal facility layout design: a case study on railcar manufacturing. ‎Processes, 11(3), 869. DOI: 10.3390/pr11030869‎

‎[5] ‎ Nurudeen, A. H., Muhammad, I. D., Dagwa, I., Hassan, N. A., & Dagwa, I. M. (2020). Simulation and ‎optimization of a process layout for dehydrated fruit and vegetables processing plant using Flexsim. ‎Bayero journal of engineering and technology (BJET), 15(1), 99–106.‎

‎[6] ‎ Hassan, N. A., Arogundade, A. I., Iyenagbe, U. B., & Musa, D. I. (2023). Simulation and analyses of shea ‎nuts (vitallaria paradoxa) processing plant using FlexSim. Journal of future sustainability, 3(2), 67–74. ‎DOI: 10.5267/j.jfs.2022.11.006‎

‎[7] ‎ Wang, S., Wang, S. M., & Zhang, N. (2022). Flexsim-based simulation and optimization of green ‎logistics distribution center. ACM international conference proceeding series (pp. 76–82). ICCMS. DOI: ‎‎10.1145/3547578.3547590‎

‎[8] ‎ Yang, Z., & Lu, W. (2023). Facility layout design for modular construction manufacturing: A ‎comparison based on simulation and optimization. Automation in construction, 147, 104713. DOI: ‎‎10.1016/j.autcon.2022.104713‎

‎[9] ‎ Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Simulation in manufacturing: Review and challenges. ‎Procedia cirp, 25, 213–229. DOI: 10.1016/j.procir.2014.10.032‎

‎[10] ‎ Malega, P., Daneshjo, N., Rudy, V., & Rehák, R. (2022). Simulation and optimization of saw ‎blade production in plant simulation. Advances in science and technology research journal, 16(3), 67–77. ‎DOI: 10.12913/22998624/148013‎

‎[11] ‎ Chen, H. Q., Dong, Y. De, Hu, F., Liu, M. M., & Zhang, S. B. (2023). Simulation and optimization ‎of scrap wagon dismantling system based on Plant Simulation. Visual computing for industry, ‎biomedicine, and art, 6(1), 7–16. DOI: 10.1186/s42492-023-00134-7‎

‎[12] ‎ Bučková, M., Skokan, R., Fusko, M., & Hodoň, R. (2019). Designing of logistics systems with ‎using of computer simulation and emulation. Transportation research procedia, 40, 978–985. DOI: ‎‎10.1016/j.trpro.2019.07.137‎

‎[13] ‎ Badharinath, E., Reddy, V. D., Kumar, P. S., & Damodaram, A. K. (2024). Optimization of ‎manufacturing plant layout using systematic layout planning (SLP) method. MATEC web of conferences ‎‎(p. 01005). EDP Sciences. DOI: 10.1051/matecconf/202439301005‎

‎[14] ‎ Peron, M., Fragapane, G., Sgarbossa, F., & Kay, M. (2020). Digital facility layout planning. ‎Sustainability (switzerland), 12(8), 3349. DOI: 10.3390/SU12083349‎

‎[15] ‎ Zahid, M. N. B. O., & Amran, M. Z. B. S. (2023). Optimization of the automotive manufacturing ‎plant using systematic layout planning (slp) with modular layout. Lecture notes in mechanical ‎engineering (pp. 401–410). Springer. DOI: 10.1007/978-981-99-1245-2_38‎

‎[16] ‎ Patil, R. J., Kubade, P. R., & Kulkarni, H. B. (2019). Optimization of machine shop layout by ‎using flexsim software. AIP conference proceedings. AIP Publishing. DOI: 10.1063/1.5141203‎

‎[17] ‎ Salins, S. S., Zaidi, S. A. R., Deepak, D., & Sachidananda, H. K. (2024). Design of an improved ‎layout for a steel processing facility using SLP and lean Manufacturing techniques. International journal ‎on interactive design and manufacturing, 1–22. DOI: 10.1007/s12008-024-01828-9‎

‎[18] ‎ Maina, E. (2018). Improvement of facility layout using systematic layout planning. IOSR journal ‎of engineering, 08, 33–43. https://www.researchgate.net/publication/343933376‎

‎[19] ‎ Kumar, V., & Naga Malleswari, V. (2022). Improvement of facility layout design using ‎systematic layout planning methodology. Journal of physics: conference series, 2312(1). DOI: 10.1088/1742-‎‎6596/2312/1/012089‎

‎[20] ‎ Gao, G., Feng, Y., Zhang, Z., Wang, S., & Yang, Z. (2023). Integrating SLP with simulation to ‎design and evaluate facility layout for industrial head lettuce production. Annals of operations research, ‎‎321(1–2), 209–240. DOI: 10.1007/s10479-022-04893-z

‎[21] ‎ Fan, X., & Markram, H. (2019). A brief history of simulation neuroscience. Frontiers in ‎neuroinformatics (pp. 567–574). IEEE. DOI: 10.3389/fninf.2019.00032‎

‎[22] ‎ Cimino, A., Longo, F., Nicoletti, L., & Veltri, P. (2024). Automated simulation modeling: ‎ensuring resilience and flexibility in Industry 4.0 manufacturing systems. Procedia computer science, 232, ‎‎1011–1024. DOI: 10.1016/j.procs.2024.01.100‎

‎[23] ‎ Goienetxea Uriarte, A., Ng, A. H. C., & Urenda Moris, M. (2020). Bringing together Lean and ‎simulation: a comprehensive review. International journal of production research, 58(1), 87–117. DOI: ‎‎10.1080/00207543.2019.1643512‎

‎[24] ‎ Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: ‎Literature review and analysis. Journal of manufacturing systems, 33(2), 241–261. DOI: ‎‎10.1016/j.jmsy.2013.12.007‎

‎[25] ‎ Chiniara, G., Cole, G., Brisbin, K., Huffman, D., Cragg, B., Lamacchia, M., & Norman, D. (2013). ‎Simulation in healthcare: A taxonomy and a conceptual framework for instructional design and media ‎selection. Medical teacher, 35(8), e1380--e1395. DOI: 10.3109/0142159X.2012.733451‎

‎[26] ‎ Longo, F., Nervoso, A., Nicoletti, L., Solina, V., & Solis, A. O. (2024). Modeling & Simulation ‎for assessing production policies: a real case study from a manufacturing company in Canada. Procedia ‎computer science, 232, 1192–1200. DOI: 10.1016/j.procs.2024.01.117‎

‎[27] ‎ Akpan, I. J., Shanker, M., & Razavi, R. (2020). Improving the success of simulation projects ‎using 3D visualization and virtual reality. Journal of the operational research society, 71(12), 1900–1926. ‎DOI: 10.1080/01605682.2019.1641649‎

‎[28] ‎ Dhanaraj, R. K., Bashir, A. K., Rajasekar, V., Balusamy, B., & Malik, P. (2023). Digital twin for ‎smart manufacturing. Digital twin for smart manufacturing, 1–301. DOI: 10.1016/C2021-0-01688-6‎

‎[29] ‎ Bučko, M., Krejčí, L., Hlavatý, I., & Lorenčík, J. (2024). Design and optimization of production ‎line layout using material flows. Machines, 12(3), 189. DOI: 10.3390/machines12030189‎

‎[30] ‎ Wu, G., Yao, L., & Yu, S. (2018). Simulation and optimization of production line based on ‎FlexSim. Proceedings of the 30th chinese control and decision conference, ccdc 2018, 3358–3363. DOI: ‎‎10.1109/CCDC.2018.8407704‎

‎[31] ‎ Guo, J., Chen, K., Zheng, R., Zhang, W., Li, W., Mo, Y., & Zhou, D. (2021). Research on ‎optimization of production line of type a product. Mechanisms and machine science (Vol. 105, pp. 923–‎‎931). Springer. DOI: 10.1007/978-3-030-75793-9_85‎

‎[32] ‎ Qamar, A. M., Meanazel, O. T., Alalawin, A. H., & Almomani, H. A. (2020). Optimization of ‎plant layout in jordan light vehicle manufacturing company. Journal of the institution of engineers (india): ‎series c, 101(4), 721–728. DOI: 10.1007/s40032-020-00576-5‎

‎[33] ‎ Dawson, K. (2020). Facilities and design. Crc Press.‎

‎[34] ‎ Marcoux, N., Riopel, D., & Langevin, A. (2005). Models and methods for facilities layout design ‎from an applicability to real-world perspective. In Logistics systems: design and optimization (pp. 123–‎‎170). Springer. DOI: 10.1007/0-387-24977-X_5‎

‎[35] ‎ Lasut, A., Rottie, R., & Kairupan, I. (2019). Usulan tata letak fasilitas produksi dengan metode ‎systematic layout planning. Jurnal ilmiah realtech, 15(1), 40–46. DOI: 10.52159/realtech.v15i1.82‎

‎[36] ‎ Wang, Y., Gu, Y., Zhang, X., Li, K., & Guan, G. (2024). Research on the intelligent layout ‎method of ship multi-deck cabins based on improved SLP and GMBOA. Ocean engineering, 295, 116873. ‎DOI: 10.1016/j.oceaneng.2024.116873‎

‎[37] ‎ Bao, S. Q., Chen, H. X., Jiang, G. J., & Zhou, X. H. (2008). Optimizing the logistics of streamline ‎based on software Flexsim. Industrial engineering and management, 13(4), 106–109.‎

‎[38] ‎ Wang, Y., Zhang, Y., & Mao, H. (2009). Study on material flow simulation of automobile ‎production line. Logistics technology, 28(1), 127–129.‎

‎[39] ‎ Cao, Y. H., Peng, H. G., & Ma, H. Y. (2009). Application of simulation technology based on ‎Flexsim on production line. Journal of zhejiang university of science and technology, 21(1), 10–14.‎

‎[40] ‎ Suhardini, D., Septiani, W., & Fauziah, S. (2017). Design and simulation plant layout using ‎systematic layout planning. IOP conference series: materials science and engineering (p. 12051). IOP ‎Publishing. DOI: 10.1088/1757-899X/277/1/012051‎

Published

2024-07-23

How to Cite

Facility Layout Design, Simulation, and Optimization for Kaolin Beneficiation Plant Using FLEXSIM. (2024). Mechanical Technology and Engineering Insights, 1(1), 15-28. https://mtei.reapress.com/journal/article/view/19