A Comprehensive Study on Thermal Barrier Coating Techniques in High-Temperature Applications

Authors

  • Aniekan Essienubong Ikpe Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB.1200, Nigeria‎.
  • Imoh Ime Ekanem ‎Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB.1200, Nigeria‎.
  • Emem Okon Ikpe Department of Science Technology, Akwa Ibom State Polytechnic, Ikot Osurua, PMB 1200, Nigeria‎.

Keywords:

Thermal barrier coating, Thermal insulation, Extreme heat, Thermal cycle, Heat transfer

Abstract

High temperature applications, such as gas turbines, aircraft engines, and industrial furnaces, require materials that can withstand extreme heat and thermal cycling. Thermal barrier coatings (TBCs) are commonly used to protect components in these applications from high temperature degradation. TBCs are typically applied to the surface of components to provide thermal insulation and reduce heat transfer, thereby extending the service life of the components. This paper presents a comprehensive study on different TBC techniques used in high temperature applications. The methodology of this study involved a comprehensive review of existing literature on TBC techniques used in high temperature applications. This review included studies on different types of TBC materials, deposition methods, and performance evaluations. In addition, data from relevant studies were analysed to assess the effectiveness of different TBC techniques in protecting components from high temperature degradation. Findings of the study revealed that there are several TBC techniques that are commonly used in high temperature applications. These techniques include electron beam physical vapour deposition (EB-PVD), atmospheric plasma spraying (APS), and sol-gel coating. Each of these techniques has its own advantages and limitations in terms of thermal insulation, adhesion strength, and durability. EB-PVD is known for its high thermal insulation properties and excellent adhesion strength, making it suitable for high temperature applications. APS, on the other hand, is a cost-effective technique that can be used for large-scale production of TBCs. Sol-gel coating offers good thermal insulation and corrosion resistance, but may have lower adhesion strength compared to other techniques. Findings of the study suggest that the choice of TBC technique should be based on specific requirements of the applications, such as temperature range, thermal cycling conditions, and component geometry in order to protect components from high temperature degradation. Further research is needed to optimize TBC techniques for specific high temperature applications and improve their performance in harsh environments.

 

References

‎[1] ‎ Tejero-Martin, D., Rezvani Rad, M., McDonald, A., & Hussain, T. (2019). Beyond traditional coatings: a ‎review on thermal-sprayed functional and smart coatings. Journal of thermal spray technology, 28(4), 598–644. ‎DOI:10.1007/s11666-019-00857-1‎

‎[2] ‎ Vassen, R., Stuke, A., & Stöver, D. (2009). Recent developments in the field of thermal barrier coatings. ‎Journal of thermal spray technology, 18(2), 181–186. DOI:10.1007/s11666-009-9312-7‎

‎[3] ‎ Pakseresht, A., Sharifianjazi, F., Esmaeilkhanian, A., Bazli, L., Reisi Nafchi, M., Bazli, M., & Kirubaharan, ‎K. (2022). Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier ‎coatings: a systematic review. Materials and design, 222, 111044. DOI:10.1016/j.matdes.2022.111044‎

‎[4] ‎ Guo, L., He, W., Chen, W., Xue, Z., He, J., Guo, Y., … & Guo, H. (2023). Progress on high-temperature ‎protective coatings for aero-engines. Surface science and technology, 1(1), 6. DOI:10.1007/s44251-023-00005-6‎

‎[5] ‎ Guo, D., Zhou, F., Xu, B., Wang, Y., & Wang, Y. (2023). High-entropy (La0. 2Nd0. 2Sm0. 2Gd0. 2Yb0. 2) 2 ‎‎(Zr0. 75Ce0. 25) 2O7 thermal barrier coating material with significantly enhanced fracture toughness. ‎Chinese journal of aeronautics, 36(4), 556–564. DOI:10.1016/j.cja.2022.12.001‎

‎[6] ‎ Shi, L., Sun, Z., & Lu, Y. (2020). The combined influences of film cooling and thermal barrier coatings on ‎the cooling performances of a film and internal cooled vane. Coatings, 10(9), 861. ‎DOI:10.3390/coatings10090861‎

‎[7] ‎ Padture, N. P., Gell, M., & Jordan, E. H. (2002). Thermal barrier coatings for gas-turbine engine ‎applications. Science, 296(5566), 280–284. DOI:10.1126/science.1068609‎

‎[8] ‎ Grilli, M. L., Valerini, D., Slobozeanu, A. E., Postolnyi, B. O., Balos, S., Rizzo, A., & Piticescu, R. R. (2021). ‎Critical raw materials saving by protective coatings under extreme conditions: a review of last trends in ‎alloys and coatings for aerospace engine applications. Materials, 14(7), 1656. DOI:10.3390/ma14071656‎

‎[9] ‎ Sinha, A., Swain, B., Behera, A., Mallick, P., Samal, S. K., Vishwanatha, H. M., & Behera, A. (2022). A review ‎on the processing of aero-turbine blade using 3D print techniques. Journal of manufacturing and materials ‎processing, 6(1), 16. DOI:10.3390/jmmp6010016‎

‎[10] ‎ Falak, A. I. & Grzegorz, M. (2023). Recent development in advance ceramic materials and understanding ‎the mechanisms of thermal barrier coatings degradation. Archives of computational methods in engineering, ‎‎30(12). DOI:10.1007/s11831-023-09960-7‎

‎[11] ‎ Wei, Z. Y., Meng, G. H., Chen, L., Li, G. R., Liu, M. J., Zhang, W. X., … & Li, C. J. (2022). Progress in ceramic ‎materials and structure design toward advanced thermal barrier coatings. Journal of advanced ceramics, ‎‎11(7), 985–1068. DOI:10.1007/s40145-022-0581-7‎

‎[12] ‎ Iqbal, A., & Moskal, G. (2023). Recent development in advance ceramic materials and understanding the ‎mechanisms of thermal barrier coatings degradation. Archives of computational methods in engineering, 30(8), ‎‎4855–4896. DOI:10.1007/s11831-023-09960-7‎

‎[13] ‎ Mathanbabu, M., Thirumalaikumarasamy, D., Thirumal, P., & Ashokkumar, M. (2021). Study on thermal, ‎mechanical, microstructural properties and failure analyses of lanthanum zirconate based thermal barrier ‎coatings: a review. Materials today: proceedings, 46, 7948–7954. DOI:10.1016/j.matpr.2021.02.672‎

‎[14] ‎ Mondal, K., Nuñez, L., Downey, C. M., & van Rooyen, I. J. (2021). Recent advances in the thermal barrier ‎coatings for extreme environments. Materials science for energy technologies, 4, 208–210. ‎DOI:10.1016/j.mset.2021.06.006‎

‎[15] ‎ Bogdan, M., & Peter, I. (2024). A comprehensive understanding of thermal barrier coatings (TBCs): ‎applications, materials, coating design and failure mechanisms. Metals, 14(5), 575. ‎DOI:10.3390/met14050575‎

‎[16] ‎ Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings—a review. Surface review and letters, ‎‎13(05), 535–544.‎

‎[17] ‎ Banerjee, P., Roy, A., Sen, S., Ghosh, A., Saha, G., Seikh, A. H., … & Ghosh, M. (2023). Service life ‎assessment of yttria stabilized zirconia (YSZ) based thermal barrier coating through wear behaviour. ‎Heliyon, 9(5), E16107. DOI:10.1016/j.heliyon.2023.e16107‎

‎[18] ‎ Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K. K., Linul, E., … & Xu, J. (2022). Processing and ‎advancements in the development of thermal barrier coatings: a review. Coatings, 12(9), 1318. ‎DOI:10.3390/coatings12091318‎

‎[19] ‎ Kadam, N. R., Karthikeyan, G., Jagtap, P. M., & Kulkarni, D. M. (2023). An atmospheric plasma spray and ‎electron beam-physical vapour deposition for thermal barrier coatings: a review. Australian journal of ‎mechanical engineering, 21(5), 1729–1754. DOI:10.1080/14484846.2022.2030088‎

‎[20] ‎ Zhu, D., & Miller, R. A. (2004). Development of advanced low conductivity thermal barrier coatings. ‎International journal of applied ceramic technology, 1(1), 86–94. DOI:10.1111/j.1744-7402.2004.tb00158.x‎

‎[21] ‎ Ma, X., Rivellini, K., Ruggiero, P., & Wildridge, G. (2023). Novel thermal barrier coatings with phase ‎composite structures for extreme environment applications: concept, process, evaluation and ‎performance. Coatings, 13(1), 210. DOI:10.3390/coatings13010210‎

‎[22] ‎ Qian, B., Wang, Y., Zu, J., Xu, K., Shang, Q., & Bai, Y. (2024). A review on multicomponent rare earth ‎silicate environmental barrier coatings. Journal of materials research and technology, 29, 1231–1243. ‎DOI:10.1016/j.jmrt.2024.01.170‎

‎[23] ‎ Chen, H. F., Zhang, C., Liu, Y. C., Song, P., Li, W. X., Yang, G., & Liu, B. (2020). Recent progress in ‎thermal/environmental barrier coatings and their corrosion resistance. Rare metals, 39(5), 498–512. ‎DOI:10.1007/s12598-019-01307-1‎

‎[24] ‎ Minneci, R. P., Lass, E. A., Bunn, J. R., Choo, H., & Rawn, C. J. (2021). Copper-based alloys for structural ‎high-heat-flux applications: a review of development, properties, and performance of Cu-rich Cu–Cr–Nb ‎alloys. International materials reviews, 66(6), 394–425. DOI:10.1080/09506608.2020.1821485‎

‎[25] ‎ Viana, R., & MacHado, A. R. (2009). Influence of adhesion between coating and substrate on the ‎performance of coated HSS twist drills. Journal of the brazilian society of mechanical sciences and engineering, ‎‎31(4), 327–332. DOI:10.1590/S1678-58782009000400007‎

‎[26] ‎ Scotson, D., Paksoy, A. H., & Xiao, P. (2024). Characterisation techniques for investigating TBC and EBC ‎failure: a review. Frontiers in ceramics, 1, 1307437. DOI:10.3389/fceic.2023.1307437‎

‎[27] ‎ Fang, Y., Cui, X., Yan, C., Chen, Z., Jing, Y., Wen, X., … & Tian, H. (2022). Thermal cycling behavior of ‎plasma-sprayed yttria-stabilized zirconia thermal barrier coating with La0.8Ba0.2TiO3−δ top layer. ‎Ceramics international, 48(5), 6185–6198. DOI:10.1016/j.ceramint.2021.11.159‎

‎[28] ‎ Xue, Z., Zhou, L., Shi, M., Zhang, Z., Byon, E., & Zhang, S. (2023). Preparation and sintering behavior of ‎GdYb-YSZ nanostructured thermal barrier coating. Journal of materials research and technology, 26, 7237–7247. ‎DOI:10.1016/j.jmrt.2023.09.062‎

‎[29] ‎ Shanmugavelayutham, G., & Kobayashi, A. (2007). Mechanical properties and oxidation behaviour of ‎plasma sprayed functionally graded zirconia-alumina thermal barrier coatings. Materials chemistry and ‎physics, 103(2–3), 283–289. DOI:10.1016/j.matchemphys.2007.02.066‎

‎[30] ‎ Belmonte, M. (2006). Advanced ceramic materials for high temperature applications. Advanced engineering ‎materials, 8(8), 693–703. DOI:10.1002/adem.200500269‎

‎[31] ‎ Khan, M. A., Anand, A. V., Duraiselvam, M., Rao, K. S., Singh, R. A., & Jayalakshmi, S. (2021). Thermal ‎shock resistance and thermal insulation capability of laser-glazed functionally graded lanthanum ‎magnesium hexaluminate/yttria-stabilised zirconia thermal barrier coating. Materials, 14(14), 3865. ‎DOI:10.3390/ma14143865‎

‎[32] ‎ Karaoglanli, A. C., Ozgurluk, Y., Gulec, A., Ozkan, D., & Binal, G. (2023). Effect of coating degradation on ‎the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings. Surface ‎and coatings technology, 473, 130000. DOI:10.1016/j.surfcoat.2023.130000‎

‎[33] ‎ Barwinska, I., Kopec, M., Kukla, D., Senderowski, C., & Kowalewski, Z. L. (2023). Thermal barrier coatings ‎for high-temperature performance of nickel-based superalloys: a synthetic review. Coatings, 13(4), 769. ‎DOI:10.3390/coatings13040769‎

‎[34] ‎ Hardwicke, C. U., & Lau, Y. C. (2013). Advances in thermal spray coatings for gas turbines and energy ‎generation: a review. Journal of thermal spray technology, 22(5), 564–576. DOI:10.1007/s11666-013-9904-0‎

‎[35] ‎ Abdul-Aziz, A. (2018). Durability modeling review of thermal- and environmental-barrier-coated fiber-‎reinforced ceramic matrix composites part I. Materials, 10(7), 1251. DOI:10.3390/ma11071251‎

‎[36] ‎ Iqbal, A., Moskal, G., Cavaleiro, A., Amjad, A., & khan, M. J. (2024). The current advancement of zirconate ‎based dual phase system in thermal barrier coatings (TBCs): new modes of the failures: understanding ‎and investigations. Alexandria engineering journal, 91, 161–196. DOI:10.1016/j.aej.2024.01.063‎

‎[37] ‎ Lashmi, P. G., Ananthapadmanabhan, P. V., Unnikrishnan, G., & Aruna, S. T. (2020). Present status and ‎future prospects of plasma sprayed multilayered thermal barrier coating systems. Journal of the european ‎ceramic society, 40(8), 2731–2745. DOI:10.1016/j.jeurceramsoc.2020.03.016‎

‎[38] ‎ Xu, J., Sarin, V. K., Dixit, S., & Basu, S. N. (2015). Stability of interfaces in hybrid EBC/TBC coatings for Si-‎based ceramics in corrosive environments. International journal of refractory metals and hard materials, 49(1), ‎‎339–349. DOI:10.1016/j.ijrmhm.2014.08.013‎

‎[39] ‎ Darolia, R. (2013). Thermal barrier coatings technology: critical review, progress update, remaining ‎challenges and prospects. International materials reviews, 58(6), 315–348. ‎DOI:10.1179/1743280413Y.0000000019‎

‎[40] ‎ Ramaswamy, P., Vattappara, K., Avijit Gomes, S., & Teja Pasupuleti, K. (2022). Residual stress analysis on ‎functionally graded 8% Y2O3-ZrO2 and NiCrAlY thermal barrier coatings. Materials today: proceedings, 66, ‎‎1638–1644. DOI:10.1016/j.matpr.2022.05.253‎

‎[41] ‎ Kim, J., Song, D., Lyu, G., Pyeon, J., Yang, S. C., Ahn, J., … & Yang, B. il. (2021). Hot corrosion behavior of ‎Yb2O3–Gd2O3–Y2O3 co-stabilized zirconia-based thermal barrier coatings covered with a Lewis neutral ‎layer. Surface and coatings technology, 428, 127911. DOI:10.1016/j.surfcoat.2021.127911‎

‎[42] ‎ Rahimipour, M. R., & Mahdipoor, M. S. (2013). Comparative study of plasma sprayed yittria and ceria ‎stabilized zirconia properties. International journal of engineering, transactions a: basics, 26(1), 13–18. ‎DOI:10.5829/idosi.ije.2013.26.01a.02‎

‎[43] ‎ Bahamirian, M., Hadavi, S. M. M., Farvizi, M., Keyvani, A., & Rahimipour, M. R. (2020). ZrO2 9.5Y2O3 ‎‎5.6Yb2O3 5.2Gd2O3; a promising TBC material with high resistance to hot corrosion. Journal of asian ‎ceramic societies, 8(3), 898–908. DOI:10.1080/21870764.2020.1793474‎

‎[44] ‎ Wang, K., Song, Y., Zhang, Y., Zhang, Y., & Cheng, Z. (2022). Quality improvement of GaN Epi-layers ‎grown with a strain-releasing scheme on suspended ultrathin si nanofilm substrate. Nanoscale research ‎letters, 17(1), 99. DOI:10.1186/s11671-022-03732-1‎

‎[45] ‎ Zhao, Z., Chen, H., Xiang, H., Dai, F. Z., Wang, X., Xu, W., … & Zhou, Y. (2020). High-entropy ‎‎(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: a promising thermal/environmental barrier material for oxide/oxide ‎composites. Journal of materials science and technology, 47, 45–51. DOI:10.1016/j.jmst.2020.02.011‎

‎[46] ‎ Wang, X., Xiang, H., Sun, X., Liu, J., Hou, F., & Zhou, Y. (2014). Thermal properties of a prospective ‎thermal barrier material: Yb3Al5O12. Journal of materials research, 29(22), 2673–2681. ‎DOI:https://doi.org/10.1557/jmr.2014.319‎

‎[47] ‎ Xiang, H., Feng, Z., & Zhou, Y. (2014). Mechanical and thermal properties of Yb2SiO5: first-principles ‎calculations and chemical bond theory investigations. Journal of materials research, 29(15), 1609–1619.‎

‎[48] ‎ Gildersleeve, E. J., & Vaßen, R. (2023). Thermally sprayed functional coatings and multilayers: a selection ‎of historical applications and potential pathways for future innovation. Journal of thermal spray technology, ‎‎32(4), 778–817. DOI:10.1007/s11666-023-01587-1‎

‎[49] ‎ Sahoo, S., Wickramathilaka, K. Y., Njeri, E., Silva, D., & Suib, S. L. (2024). A review on transition metal ‎oxides in catalysis. Frontiers in chemistry, 12, 1374878. DOI:10.3389/fchem.2024.1374878‎

‎[50] ‎ Tsai, P. C., Tseng, C. F., Yang, C. W., Kuo, I. C., Chou, Y. L., & Lee, J. W. (2013). Thermal cyclic oxidation ‎performance of plasma sprayed zirconia thermal barrier coatings with modified high velocity oxygen ‎fuel sprayed bond coatings. Surface and coatings technology, 228(SUPPL.1), S11--S14. ‎DOI:10.1016/j.surfcoat.2012.10.004‎

‎[51] ‎ Liu, Q., Huang, S., & He, A. (2019). Composite ceramics thermal barrier coatings of yttria stabilized ‎zirconia for aero-engines. Journal of materials science and technology, 35(12), 2814–2823. ‎DOI:10.1016/j.jmst.2019.08.003‎

‎[52] ‎ Ramezani, M., Mohd Ripin, Z., Pasang, T., & Jiang, C. P. (2023). Surface engineering of metals: techniques, ‎characterizations and applications. Metals, 13(7), 1299. DOI:10.3390/met13071299‎

‎[53] ‎ Nair, R. B., & Brabazon, D. (2024). Calcia magnesia alumino silicate (CMAS) corrosion attack on thermally ‎sprayed thermal barrier coatings: a comprehensive review. Npj materials degradation, 8(1), 44. ‎DOI:10.1038/s41529-024-00462-w

‎[54] ‎ Saad, A. Al, Martinez, C., & Trice, R. W. (2023). Ablation performance of rare earth oxide (REO)-stabilized ‎tetragonal and cubic zirconia coatings as a thermal protection system (TPS) for carbon/carbon composites. ‎Journal of the european ceramic society, 43(14), 6449–6460. DOI:10.1016/j.jeurceramsoc.2023.06.028‎

‎[55] ‎ Dai, T., Song, Z., Du, Y., Zhao, Y., & Cui, S. (2021). Oxidation resistance of double-layer mosi2–borosilicate ‎glass coating on fiber-reinforced c/sio2 aerogel composite. Frontiers in materials, 8, 719833. ‎DOI:10.3389/fmats.2021.719833‎

‎[56] ‎ Singh, S., Berndt, C. C., Singh Raman, R. K., Singh, H., & Ang, A. S. M. (2023). Applications and ‎developments of thermal spray coatings for the iron and steel industry. Materials, 16(2), 516. ‎DOI:10.3390/ma16020516‎

‎[57] ‎ Cañas, E., Rosado, E., Alcázar, C., Orts, M. J., Moreno, R., & Sánchez, E. (2022). Challenging zircon coatings ‎by suspension plasma spraying. Journal of the european ceramic society, 42(10), 4369–4376. ‎DOI:10.1016/j.jeurceramsoc.2022.03.049‎

‎[58] ‎ Chowdhury, T. S., Mohsin, F. T., Tonni, M. M., Mita, M. N. H., & Ehsan, M. M. (2023). A critical review on ‎gas turbine cooling performance and failure analysis of turbine blades. International journal of thermofluids, ‎‎18, 100329. DOI:10.1016/j.ijft.2023.100329‎

‎[59] ‎ Feuerstein, A., Knapp, J., Taylor, T., Ashary, A., Bolcavage, A., & Hitchman, N. (2008). Technical and ‎economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray ‎and EBPVD: a review. Journal of thermal spray technology, 17(2), 199–213. DOI:10.1007/s11666-007-9148-y

‎[60] ‎ Xu, H., Guo, H., & Gong, S. (2008). 16—thermal barrier coatings. Developments in high temperature corrosion ‎and protection of materials; woodhead publishing series in metals and surface engineering, 476–491.‎

‎[61] ‎ Shvydyuk, K. O., Nunes-Pereira, J., Rodrigues, F. F., & Silva, A. P. (2023). Review of ceramic composites in ‎aeronautics and aerospace: a multifunctional approach for TPS, TBC and DBD applications. Ceramics, 6(1), ‎‎195–230. DOI:10.3390/ceramics6010012‎

Published

2024-08-29

How to Cite

A Comprehensive Study on Thermal Barrier Coating Techniques in High-Temperature Applications. (2024). Mechanical Technology and Engineering Insights, 1(1), 29-46. https://mtei.reapress.com/journal/article/view/20