Comprehensive study on the Effects of TIG Welding Parameters on the Microstructure and Mechanical Properties of Titanium Alloys: A review
Keywords:
Titanium alloys, Mechanical properties, TIG welding, MicrostructureAbstract
Titanium alloys are widely used in various industries due to their excellent mechanical properties, corrosion resistance, and biocompatibility. However, the welding of titanium alloys poses challenges due to their high reactivity with oxygen and nitrogen, which can lead to the formation of brittle intermetallic compounds and porosity in the weld zone. The selection of appropriate TIG welding parameters is crucial to ensure the desired microstructure and mechanical properties in the welded joints. Therefore, there is a need for a comprehensive review of the effects of TIG welding parameters on the microstructure and mechanical properties of titanium alloys to provide guidelines for optimizing welding processes. The research methodology involved a systematic review of existing studies on TIG welding of titanium alloys. The research methodology involved a literature search of existing studies on TIG welding of titanium alloys using online databases. The selected studies were analyzed to identify the effects of welding parameters such as welding current, welding speed, and shielding gas flow rate on the microstructure and mechanical properties of titanium alloys. The analysis of the literature revealed that the selection of TIG welding parameters significantly influences the microstructure and mechanical properties of titanium alloys. Higher welding currents and slower welding speeds were found to increase the heat input, leading to larger grain sizes and reduced mechanical properties in the weld zone. On the other hand, lower welding currents and higher welding speeds resulted in finer microstructures and improved mechanical properties. Additionally, the use of appropriate shielding gas flow rates was found to minimize the formation of porosity and intermetallic compounds in the weld zone. The study provides valuable insights into the optimization of TIG welding processes parameters to achieve desired properties in the welded joints. Welding parameters should be selected carefully in order to control the heat input and minimize the formation of defects in the weld zone. Future research should focus on developing advanced welding techniques and process monitoring systems to further improve the quality of welded titanium alloys.
References
[1] Karayel, E., & Bozkurt, Y. (2020). Additive manufacturing method and different welding applications. Journal of materials research and technology, 9(5), 11424–11438. DOI: 10.1016/j.jmrt.2020.08.039
[2] Zhai, X., Jin, L., & Jiang, J. (2022). A survey of additive manufacturing reviews. Materials science in additive manufacturin, 1(4), 21. DOI: 10.18063/msam.v1i4.21
[3] Tolvanen, S., Pederson, R., & Klement, U. (2024). Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes. Materials, 17(4), 782. DOI: 10.3390/ma17040782
[4] Tolvanen, S. (2016). Microstructure and mechanical properties of ti-6al-4v welds produced with different processes. [Thesis]. https://acesse.dev/ZhhMd
[5] Junaid, M., Rahman, K., Khan, F. N., Bakhsh, N., & Baig, M. N. (2019). Comparison of microstructure, mechanical properties, and residual stresses in tungsten inert gas, laser, and electron beam welding of Ti--5Al-2.5 Sn titanium alloy. Proceedings of the institution of mechanical engineers, part l: journal of materials: design and applications, 233(7), 1336–1351. DOI: 10.1177/1464420717748345
[6] Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova, I. (2024). A comprehensive review on fusion welding of high entropy alloys – Processing, microstructural evolution and mechanical properties of joints. International journal of lightweight materials and manufacture, 7(1), 122–183. DOI: 10.1016/j.ijlmm.2023.06.003
[7] Li, H., Zou, J., Yao, J., & Peng, H. (2017). The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy. Journal of alloys and compounds, 727, 531–539. DOI: 10.1016/j.jallcom.2017.08.157
[8] Zhang, D., Wang, G., Wu, A., Zhao, Y., Li, Q., Liu, X., … Zhang, Z. (2019). Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints. Journal of alloys and compounds, 777(10), 1044–1053. DOI: 10.1016/j.jallcom.2018.10.182
[9] Li, J., Dong, R., Kou, H., Fan, J., Zhu, B., & Tang, B. (2020). Texture evolution and the recrystallization behavior in a near β titanium alloy Ti-7333 during the hot-rolling process. Materials characterization, 159, 109999. DOI: 10.1016/j.matchar.2019.109999
[10] Karim, M. A., & Park, Y. D. (2020). A review on welding of dissimilar metals in car body manufacturing. Journal of welding and joining, 38(1), 8–23. DOI: 10.5781/JWJ.2020.38.1.1
[11] Elmi Hosseini, S. R., Fernandes, F. A. O., Pereira, A. B., & Li, Z. (2022). Welding of dissimilar materials in aerospace systems. In Kucshan, M. C. … Sofuouglu, M. A. (Eds.), Materials, structures and manufacturing for aircraft (pp. 317–344). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-91873-6_13
[12] Zhang, K., He, C., Liu, D., Yan, C., Niu, H., Yang, Z., & Bao, Y. (2022). Effect of heat input on microstructure and tensile properties of laser welded Ti–3Al–6Mo–2Fe–2Zr alloy joint. Journal of materials research and technology, 17, 1652–1661. DOI: 10.1016/j.jmrt.2022.01.089
[13] Long, J., Zhang, L. J., Ning, J., Zhang, L. L., Wang, X., Li, S., & Na, S. J. (2021). Effects of post-weld heat treatment on microstructures and properties of laser welded joints of new high-strength Ti-55531 alloy. Journal of manufacturing processes, 64, 1329–1335. DOI: 10.1016/j.jmapro.2021.02.042
[14] Paul, A. R., Mukherjee, M., & Singh, D. (2022). A critical review on the properties of intermetallic compounds and their application in the modern manufacturing. Crystal research and technology, 57(3), 2100159. DOI: 10.1002/crat.202100159
[15] Kumar, B., Kebede, D., & Bag, S. (2018). Microstructure evolution in thin sheet laser welding of titanium alloy. International journal of mechatronics and manufacturing systems, 11(2–3), 203–229. DOI: 10.1504/IJMMS.2018.092875
[16] Wei, G., Tan, M., Attarilar, S., Li, J., Uglov, V. V., Wang, B., … Wang, L. (2023). An overview of surface modification, a way toward fabrication of nascent biomedical Ti-6Al-4V alloys. Journal of materials research and technology, 24, 5896–5921. DOI: 10.1016/j.jmrt.2023.04.046
[17] Xu, J., Zhang, J., Shi, Y., Tang, J., Huang, D., Yan, M., & Dargusch, M. S. (2022). Surface modification of biomedical Ti and Ti alloys: a review on current advances. Materials, 15(5), 1749. DOI: 10.3390/ma15051749
[18] Senopati, G., Rahman Rashid, R. A., Kartika, I., & Palanisamy, S. (2023). Recent development of low-cost β-Ti alloys for biomedical applications: a review. Metals, 13(2), 194. DOI: 10.3390/met13020194
[19] Bassey, M., Offiong, U., & Ikpe, A. (2023). Finite element simulation for thermo-mechanical transient behavior of mild steel plate agglutinated by gas tungsten arc welding (GTAW) technique. Journal of materials engineering, structures and computation, 2(3), 549–559. DOI: 10.5281/zenodo.8306756
[20] Ikpe, A. E., & Bassey, M. O. (2023). Modelling and simulation of transient thermal stress distribution across AISI 1018 flat plates at variable welding temperature regime. Journal of materials engineering, structures and computation, 2(3). https://journals.nipes.org/index.php/jmsc/article/view/672
[21] Omoniyi, P. O., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2021). An overview of TIG welding of Ti6Al4V: recent developments. Journal of composite & advanced materials/revue des composites et des matériaux avancés, 31(5), 265–274. DOI: 10.18280/rcma.310501
[22] Vijayakumar, V., Sonar, T., Venkatesan, S., Negemiya, A., & Ivanov, M. (2024). Influence of IP-TIG welding parameters on weld bead geometry, tensile properties, and microstructure of Ti6Al4V alloy joints. Materials testing, 66(9), 1464. DOI: 10.1515/mt-2023-0237
[23] Devore, J. L., Berk, K. N., & Carlton, M. A. (2021). Statistical intervals based on a single sample. In Modern mathematical statistics with applications (pp. 451–499). Springer. DOI: 10.1007/978-3-030-55156-8_8
[24] Chang, J., Cao, R., & Yan, Y. (2019). The joining behavior of titanium and Q235 steel joined by cold metal transfer joining technology. Materials, 12(15), 2413. DOI: 10.3390/ma12152413
[25] Andersson, J. (2020). Welding metallurgy and weldability of superalloys. Metals, 10(1), 143. DOI: 10.3390/met10010143
[26] Havia, J., Lipiäinen, K., Ahola, A., & Björk, T. (2024). Fatigue design of stress relief grooves to prevent weld root fatigue in butt-welded cast steel to ultra-high-strength steel joints. Welding in the world, 68, 1–14. DOI: 10.1007/s40194-024-01797-3
[27] Nandagopal, K., & Kailasanathan, C. (2016). Analysis of mechanical properties and optimization of gas tungsten Arc welding (GTAW) parameters on dissimilar metal titanium (6Al4V) and aluminium 7075 by Taguchi and ANOVA techniques. Journal of alloys and compounds, 682, 503–516. DOI: 10.1016/j.jallcom.2016.05.006
[28] Kumar, S., Singh, P. K., & D Patel, S. B. P. (2017). Optimization of welding parameters of GTAW using response surface methodology. Scientific bulletin series-d, 79(3), 119–132. http://www.scientificbulletin.upb.ro/rev_docs_arhiva/rezb55_984682.pdf
[29] Kumar, S., Singh, P. K., Patel, D., & Prasad, S. B. (2019). Experimental investigation and optimization of welding parameters on tig welding of stainless steel aisi 304 plates. Innovation in materials science and engineering: proceedings of icemit 2017, (pp. 91–102). DOI: 10.1007/978-981-13-2944-9_10
[30] Khalid, M. (2019). Process parameters optimization of tungsten inert gas welding by taguchi method. 2019 advances in science and engineering technology international conferences (ASET). (pp. 1–5). DOI: 10.1109/ICASET.2019.8714210
[31] Dewangan, S., Mohapatra, S. K., & Sharma, A. (2020). An assessment into mechanical properties and microstructural behavior of TIG welded Ti-6Al-4V titanium alloy. Grey systems: theory and application, 10(3), 281–292. DOI: 10.1108/GS-11-2019-0052
[32] Miao, Y., Ma, Z., Yang, X., Liu, J., & Han, D. (2018). Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing. Journal of materials processing technology, 260, 104–111. DOI: 10.1016/j.jmatprotec.2018.05.019
[33] Zhang, Y., Huang, J., Ye, Z., & Cheng, Z. (2017). An investigation on butt joints of Ti6Al4V and 5A06 using MIG/TIG double-side arc welding-brazing. Journal of manufacturing processes, 27, 221–225. DOI: 10.1016/j.jmapro.2017.05.010
[34] Sen, R., Choudhury, S. P., Kumar, R., & Panda, A. (2018). A comprehensive review on the feasibility study of metal inert gas welding. Materials today: proceedings, 5(9), 17792–17801. DOI: 10.1016/j.matpr.2018.06.104
[35] Arunkumar, S. P., Prabha, C., Saminathan, R., Khamaj, J. A., Viswanath, M., Ivan, C. K. P., … Kumar, P. M. (2022). Taguchi optimization of metal inert gas (MIG) welding parameters to withstand high impact load for dissimilar weld joints. Materials today: proceedings, 56, 1411–1417. DOI: 10.1016/j.matpr.2021.11.619
[36] Madavi, K. R., Jogi, B. F., & Lohar, G. S. (2022). Metal inert gas (MIG) welding process: A study of effect of welding parameters. Materials today: proceedings, 51, 690–698. DOI: 10.1016/j.matpr.2021.06.206
[37] Cheepu, M., Venkateswarlu, D., Rao, P. N., Kumaran, S. S., & Srinivasan, N. (2019). The influence of gas tungsten arc welding parameters on mechanical and microstructure properties of the tc4 titanium alloy. Materials science forum (pp. 895–900). DOI: 10.4028/www.scientific.net/MSF.969.895
[38] Szwajka, K., Zielińska-Szwajka, J., & Trzepieciński, T. (2024). The influence of the shielding-gas flow rate on the mechanical properties of TIG-welded butt joints of commercially pure grade 1 titanium. Materials, 17(5), 1217. DOI: 10.3390/ma17051217
[39] Brykov, M. N., Petryshynets, I., Džupon, M., Kalinin, Y. A., Efremenko, V. G., Makarenko, N. A., … Kováč, F. (2020). Microstructure and properties of heat affected zone in high-carbon steel after welding with fast cooling in water. Materials, 13(22), 5059. DOI: 10.3390/ma13225059
[40] Barriobero-Vila, P., Requena, G., Warchomicka, F., Stark, A., Schell, N., & Buslaps, T. (2015). Phase transformation kinetics during continuous heating of a $β$-quenched Ti-10V-2Fe-3Al alloy. Journal of materials science, 50, 1412–1426. DOI: 10.1007/s10853-014-8701-6
[41] Bak, G. R., Won, J. W., Choe, H.-J., Park, C. H., & Hyun, Y.-T. (2019). Effect of iron content on β→α phase transformation behavior of Ti-5Al-xFe (x=1, 2.5, 4) alloys during continuous cooling. Journal of materials research and technology, 8(3), 2887–2897. DOI: 10.1016/j.jmrt.2019.02.020
[42] Ogunmefun, O. A., Bayode, B. L., Jamiru, T., & Olubambi, P. A. (2023). A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. Journal of alloys and compounds, 960, 170407. DOI: 10.1016/j.jallcom.2023.170407
[43] Williams, J. C., & Boyer, R. R. (2020). Opportunities and issues in the application of titanium alloys for aerospace components. Metals, 10(6), 705. DOI: 10.3390/met10060705
[44] Thesiya, D., Dave, J., Rajurkar, A., & Prajapati, V. (2015). Study on influence of edm process parameters during machining of Ti-6Al-4V. Journal of manufacturing technology research, 7(1/2), 53. https://encr.pw/VVfQ8
[45] Elshaer, R. N., & Ibrahim, K. M. (2022). Applications of titanium alloys in aerospace manufacturing: a brief review. The bulletin tabbin institute for metallurgical studies (TIMS), 111(1), 60–69. DOI: 10.21608/tims.2023.174504.1007
[46] Tomchik, G., & Dunder, T. G. (2006). Overview of titanium applications on advanced commercial transports. AeroMat conference, unpublished research. https://l1nq.com/TxPWN
[47] Moiseyev, V. N. (2005). Titanium alloys: russian aircraft and aerospace applications. CRC press. DOI: 10.1201/9781420037678
[48] Anil Kumar, V., Gupta, R. K., Prasad, M., & Narayana Murty, S. V. S. (2021). Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review. Journal of materials research, 36, 689–716. DOI: 10.1557/s43578-021-00104-w
[49] Antunes, R. A., Salvador, C. A. F., & Oliveira, M. C. L. de. (2018). Materials selection of optimized titanium alloys for aircraft applications. Materials research, 21, e20170979. DOI: 10.1590/1980-5373-MR-2017-0979
[50] Veiga, C., Davim, J. P., Loureiro, A. J. R., & others. (2012). Properties and applications of titanium alloys: a brief review. Reviews on advanced materials science, 32(2), 133–148.
[51] Cotton, J. D., Briggs, R. D., Boyer, R. R., Tamirisakandala, S., Russo, P., Shchetnikov, N., & Fanning, J. C. (2015). State of the art in beta titanium alloys for airframe applications. Jom, 67(6), 1281–1303. DOI: 10.1007/s11837-015-1442-4
[52] Tiwary, A., Kumar, R., & Chohan, J. S. (2022). A review on characteristics of composite and advanced materials used for aerospace applications. Materials today: proceedings, 51, 865–870. DOI: 10.1016/j.matpr.2021.06.276
[53] Khatarkar, S., Rao, D. J., & Jha, S. K. (2021). Indigenous development of titanium compressor blade for turbofan engine. Journal of aerospace sciences and technologies, 250–266. https://www.researchgate.net/publication/283863116
[54] Hémery, S., & Villechaise, P. (2017). Influence of $β$ anisotropy on deformation processes operating in Ti-5Al-5Mo-5V-3Cr at room temperature. Acta materialia, 141, 285–293. DOI: 10.1016/j.actamat.2017.09.023
[55] Huet, A., Naït Ali, A., Giroud, T., Villechaise, P., & Hémery, S. (2022). Onset of plastic deformation and strain localization in relation to β phase in metastable β and dual phase Ti alloys. Acta materialia, 240, 118348. DOI: 10.1016/j.actamat.2022.118348
[56] Zhang, X., Mei, Y., Lv, Y., Chen, C., & Zhou, K. (2018). Anisotropy of the microstructure and tensile properties in Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy during hot rolling and heat treatment. Metals, 8(11), 904. DOI: 10.3390/met8110904
[57] Kumar, V. A., Gupta, R. K., Chakravadhanula, V. S. K., Rao, A. G., Prasad, M., & Murty, S. (2019). Effect of test temperature on tensile behavior of Ti-5Al-5V-2Mo-1Cr-1Fe ($α$+ $β$) titanium alloy with initial microstructures in hot forged and heat treated conditions. Metallurgical and materials transactions a, 50, 2702–2719. DOI: 10.1007/s11661-019-05207-y
[58] Lhadi, S., Chini, M. R., Richeton, T., Gey, N., Germain, L., & Berbenni, S. (2018). Micromechanical modeling of the elasto-viscoplastic behavior and incompatibility stresses of $β$-Ti alloys. Materials, 11(7), 1227. DOI: 10.3390/ma11071227
[59] Lhadi, S., raj purohit Purushottam raj purohit, R., Richeton, T., Gey, N., Berbenni, S., Perroud, O., & Germain, L. (2020). Elasto-viscoplastic tensile behavior of as-forged Ti-1023 alloy: experiments and micromechanical modeling. Materials science and engineering: a, 787, 139491. DOI: 10.1016/j.msea.2020.139491
[60] Li, P., Chen, S., Dong, H., Ji, H., Li, Y., Guo, X., … Han, X. (2020). Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding. Journal of manufacturing processes, 49, 385–396. DOI: 10.1016/j.jmapro.2019.09.047
[61] Dong, R., Zhang, X., Li, C., Zhao, Y., Tian, J., Wu, L., & Hou, H. (2022). Correlation between the mechanical properties and the <110> texture in a hot-rolled near $β$ titanium alloy. Journal of materials science & technology, 97, 165–168. https://api.semanticscholar.org/CorpusID:237652493
[62] Wassermann, G., & Grewen, J. (1962). Textures of metallic materials. Springer-verlag, German, Berlin, 181. DOI: 10.1007/978-3-662-13128-2
[63] Engler, O., Randle, V., & others. (2003). Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. https://digital.library.tu.ac.th/tu_dc/frontend/Info/item/dc:10625
[64] Suwas, S., & Ray, R. K. (2014). Crystallographic texture of materials. Springer. DOI: 10.1007/978-1-4471-6314-5
[65] Banerjee, D., & Williams, J. C. (2013). Perspectives on titanium science and technology. Acta materialia, 61(3), 844–879. DOI: 10.1016/j.actamat.2012.10.043
[66] Bewlay, B. P., Nag, S., Suzuki, A., & Weimer, M. J. (2016). TiAl alloys in commercial aircraft engines. Materials at high temperatures, 33(4–5), 549–559. DOI: 10.1080/09603409.2016.1183068
[67] Nie, X., He, W., Cao, Z., Song, J., Li, X., Pang, Z., & Yan, X. (2021). Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy. Materials science and engineering: a, 822, 141658. DOI: 10.1016/j.msea.2021.141658
[68] Wang, Y., Zhu, Z., Sha, A., & Hao, W. (2023). Low cycle fatigue life prediction of titanium alloy using genetic algorithm-optimized BP artificial neural network. International journal of fatigue, 172, 107609. DOI: 10.1016/j.ijfatigue.2023.107609
[69] Guo, Y., Wang, S., & Liu, G. (2024). Creep-fatigue life prediction of a titanium alloy deep-sea submersible using a continuum damage mechanics-informed BP neural network model. Ocean engineering, 311, 118826. DOI: 10.1016/j.oceaneng.2024.118826
[70] Jinlong, W., Wenjie, P., Jing, Y., Jingsi, W., Mingchao, D., & Yuanliang, Z. (2021). Effect of surface roughness on the fatigue failure and evaluation of TC17 titanium alloy. Materials science and technology, 37(3), 301–313. DOI: 10.1080/02670836.2021.1885777
[71] Tukahirwa, G., & Wandera, C. (2023). Influence of process parameters in gas-metal arc welding (GMAW) of carbon steels. In Welding-materials, fabrication processes, and industry 5.0. IntechOpen. DOI: 10.5772/intechopen.1002730
[72] Ikpe, A. E., Ikechukwu, O., & Ikpe, E. (2017). Effects of arc voltage and welding current on the arc length of tungsten inert gas welding (TIG). International journal of engineering and technology (IJET), 3(4), 213-221. https://hdl.handle.net/11363/556
[73] Owunna, I. B., Ikpe, A. E., & Ohwoekevwo, J. U. (2022). Application of SEM/EDS in fractographic investigation of TIG welded AISI 1020 fusion zones at distinct welding current steps. ARID zone journal of engineering, technology & environment, 18(2), 1596–2644. https://www.ajol.info/index.php/azojete/article/view/239702/226560
[74] Hölscher, L. V., Hassel, T., & Maier, H. J. (2022). Detection of the contact tube to working distance in wire and arc additive manufacturing. The international journal of advanced manufacturing technology, 120(1), 989–999. DOI: 10.1007/s00170-022-08805-0
[75] Sato, Y., Ogino, Y., & Sano, T. (2024). Process parameters and their effect on metal transfer in gas metal arc welding: a driving force perspective. Welding in the world, 68(4), 905–913. DOI: 10.1007/s40194-023-01670-9
[76] Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Qaban, A., … Manladan, S. M. (2020). Current research and development status of dissimilar materials laser welding of titanium and its alloys. Optics & laser technology, 126, 106090. DOI: 10.1016/j.optlastec.2020.106090
[77] Messler Jr, R. W. (2019). A Practical guide to welding solutions: overcoming technical and material-specific issues. John Wiley & Sons. https://books.google.com/books?id=VvaFDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
[78] Tolvanen, S. (2018). Welding of Ti-6Al-4V: influence of welding process and alloy composition on microstructure and properties. [Thesis]. https://research.chalmers.se/en/publication/504433
[79] Song, Z., Wu, S., Hu, Y., Kang, G., Fu, Y., & Xiao, T. (2018). The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints. Acta metallurgica sinica, 54(8), 1131–1140. DOI: 10.11900/0412.1961.2017.00448
[80] Yi, H. J., Lee, Y. J., & Lee, K. O. (2016). TIG dressing effects on weld pores and pore cracking of titanium weldments. Metals, 6(10), 243. DOI: 10.3390/met6100243
[81] Sen, M., & Kurt, M. (2022). Laser and TIG welding of additive manufactured Ti-6Al-4V parts. Materials testing, 64(5), 656–666. DOI: 10.1515/mt-2021-2165
[82] Chen, S., Luo, S., Yu, H., Geng, H., Xu, G., Li, R., & Tian, Y. (2020). Effect of beam defocusing on porosity formation in laser-MIG hybrid welded TA2 titanium alloy joints. Journal of manufacturing processes, 58, 1221–1231. DOI: 10.1016/j.jmapro.2020.09.026
[83] Junaid, M., Khan, F. N., Rahman, K., & Baig, M. N. (2017). Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5 Sn alloy. Optics & laser technology, 97, 405–419. DOI: 10.1016/j.optlastec.2017.07.010
[84] J. X. Zhang, Y. X., & Gong, S. L. (2005). Residual welding stresses in laser beam and tungsten inert gas weldments of titanium alloy. Science and technology of welding and joining, 10(6), 643–646. DOI: 10.1179/174329305X48374
[85] Łagoda, T., & Głowacka, K. (2020). Fatigue life prediction of welded joints from nominal system to fracture mechanics. International journal of fatigue, 137, 105647. DOI: 10.1016/j.ijfatigue.2020.105647
[86] Zhan, Y., Zhang, E., Ge, Y., & Liu, C. (2018). Residual stress in laser welding of TC4 titanium alloy based on ultrasonic laser technology. Applied sciences, 8(10), 1997. DOI: 10.3390/app8101997
[87] Xu, L. Y., Zhu, J., Jing, H. Y., Zhao, L., Lv, X. Q., & Han, Y. D. (2016). Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti-6Al-4V joints. Materials science and engineering: a, 673, 503–510. DOI: 10.1016/j.msea.2016.07.101
[88] Liu, J., Zheng, J., Fu, B., Bu, L., Li, R., & Liu, S. (2023). Thermo-mechanical study of TIG welding of Ti-6Al-4V for residual stresses considering solid state phase transformation. Metals, 13(5), 1001. DOI: 10.3390/met13051001
[89] Li, Y., Wu, A., Li, Q., Zhao, Y., Zhu, R., & Wang, G. (2019). Effects of welding parameters on weld shape and residual stresses in electron beam welded Ti2AlNb alloy joints. Transactions of nonferrous metals society of china, 29(1), 67–76. DOI: 10.1016/S1003-6326(18)64916-7
[90] Wang, L., & Qian, X. (2022). Welding residual stresses and their relaxation under cyclic loading in welded S550 steel plates. International journal of fatigue, 162, 106992. DOI: 10.1016/j.ijfatigue.2022.106992
[91] Wang, L., & Qian, X. (2024). Effects of pre-tension and fatigue loadings on the evolution of welding residual stresses in welded plates. Engineering structures, 301, 117272. DOI: 10.1016/j.engstruct.2023.117272
[92] Hemmesi, K., Mallet, P., & Farajian, M. (2020). Numerical evaluation of surface welding residual stress behavior under multiaxial mechanical loading and experimental validations. International journal of mechanical sciences, 168(15), 105127. DOI: 10.1016/j.ijmecsci.2019.105127