Comprehensive study on the effects of TIG welding parameters on the microstructure and mechanical properties of titanium alloys: A review

Authors

https://doi.org/10.48313/mtei.v1i1.24

Abstract

Titanium alloys are widely used in various industries due to their excellent mechanical properties, corrosion resistance, and biocompatibility. However, the welding of titanium alloys poses challenges due to their high reactivity with oxygen and nitrogen, which can lead to the formation of brittle intermetallic compounds and porosity in the weld zone. The selection of appropriate TIG welding parameters is crucial to ensure the desired microstructure and mechanical properties in the welded joints. Therefore, there is a need for a comprehensive review of the effects of TIG welding parameters on the microstructure and mechanical properties of titanium alloys to provide guidelines for optimizing welding processes. The research methodology involved a systematic review of existing studies on TIG welding of titanium alloys. The research methodology involved a literature search of existing studies on TIG welding of titanium alloys using online databases. The selected studies were analyzed to identify the effects of welding parameters such as welding current, welding speed, and shielding gas flow rate on the microstructure and mechanical properties of titanium alloys. The analysis of the literature revealed that the selection of TIG welding parameters significantly influences the microstructure and mechanical properties of titanium alloys. Higher welding currents and slower welding speeds were found to increase the heat input, leading to larger grain sizes and reduced mechanical properties in the weld zone. On the other hand, lower welding currents and higher welding speeds resulted in finer microstructures and improved mechanical properties. Additionally, the use of appropriate shielding gas flow rates was found to minimize the formation of porosity and intermetallic compounds in the weld zone. The study provides valuable insights into the optimization of TIG welding processes parameters to achieve desired properties in the welded joints. Welding parameters should be selected carefully in order to control the heat input and minimize the formation of defects in the weld zone. Future research should focus on developing advanced welding techniques and process monitoring systems to further improve the quality of welded titanium alloys.           

Keywords:

Titanium alloys, Mechanical properties, TIG welding, Microstructure

Author Biography

  • Michael Okon Bassey, Department of Mechatronics Engineering, Akwa Ibom State Polytechnic, Nigeria.

    Department of mechatronics Engineering

     

References

  1. [1] Karayel, E., & Bozkurt, Y. (2020). Additive manufacturing method and different welding applications. Journal of materials research and technology, 9(5), 11424–11438. https://doi.org/10.1016/j.jmrt.2020.08.039

  2. [2] Zhai, X., Jin, L., & Jiang, J. (2022). A survey of additive manufacturing reviews. Materials science in additive manufacturin, 1(4), 21. https://doi.org/10.18063/msam.v1i4.21

  3. [3] Tolvanen, S., Pederson, R., & Klement, U. (2024). Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes. Materials, 17(4), 782. https://doi.org/10.3390/ma17040782

  4. [4] Tolvanen, S. (2016). Microstructure and mechanical properties of ti-6al-4v welds produced with different processes [Thesis]. https://acesse.dev/ZhhMd

  5. [5] Junaid, M., Rahman, K., Khan, F. N., Bakhsh, N., & Baig, M. N. (2019). Comparison of microstructure, mechanical properties, and residual stresses in tungsten inert gas, laser, and electron beam welding of Ti--5Al-2.5 Sn titanium alloy. Proceedings of the institution of mechanical engineers, part l: journal of materials: design and applications, 233(7), 1336–1351. https://doi.org/10.1177/1464420717748345

  6. [6] Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova, I. (2024). A comprehensive review on fusion welding of high entropy alloys – Processing, microstructural evolution and mechanical properties of joints. International journal of lightweight materials and manufacture, 7(1), 122–183. https://doi.org/10.1016/j.ijlmm.2023.06.003

  7. [7] Li, H., Zou, J., Yao, J., & Peng, H. (2017). The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy. Journal of alloys and compounds, 727, 531–539. https://doi.org/10.1016/j.jallcom.2017.08.157

  8. [8] Zhang, D., Wang, G., Wu, A., Zhao, Y., Li, Q., Liu, X., … & Zhang, Z. (2019). Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints. Journal of alloys and compounds, 777(10), 1044–1053. https://doi.org/10.1016/j.jallcom.2018.10.182

  9. [9] Li, J., Dong, R., Kou, H., Fan, J., Zhu, B., & Tang, B. (2020). Texture evolution and the recrystallization behavior in a near β titanium alloy Ti-7333 during the hot-rolling process. Materials characterization, 159, 109999. https://doi.org/10.1016/j.matchar.2019.109999

  10. [10] Karim, M. A., & Park, Y. D. (2020). A review on welding of dissimilar metals in car body manufacturing. Journal of welding and joining, 38(1), 8–23. https://doi.org/10.5781/JWJ.2020.38.1.1

  11. [11] Elmi Hosseini, S. R., Fernandes, F. A., Pereira, A. B., & Li, Z. (2022). Welding of dissimilar materials in aerospace systems. In Materials, structures and manufacturing for aircraft (pp. 317-344). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-91873-6_13

  12. [12] Zhang, K., He, C., Liu, D., Yan, C., Niu, H., Yang, Z., & Bao, Y. (2022). Effect of heat input on microstructure and tensile properties of laser welded Ti–3Al–6Mo–2Fe–2Zr alloy joint. Journal of materials research and technology, 17, 1652–1661. https://doi.org/10.1016/j.jmrt.2022.01.089

  13. [13] Long, J., Zhang, L. J., Ning, J., Zhang, L. L., Wang, X., Li, S., & Na, S. J. (2021). Effects of post-weld heat treatment on microstructures and properties of laser welded joints of new high-strength Ti-55531 alloy. Journal of manufacturing processes, 64, 1329–1335. https://doi.org/10.1016/j.jmapro.2021.02.042

  14. [14] Paul, A. R., Mukherjee, M., & Singh, D. (2022). A critical review on the properties of intermetallic compounds and their application in the modern manufacturing. Crystal research and technology, 57(3), 2100159. https://doi.org/10.1002/crat.202100159

  15. [15] Kumar, B., Kebede, D., & Bag, S. (2018). Microstructure evolution in thin sheet laser welding of titanium alloy. International journal of mechatronics and manufacturing systems, 11(2–3), 203–229. https://doi.org/10.1504/IJMMS.2018.092875

  16. [16] Wei, G., Tan, M., Attarilar, S., Li, J., Uglov, V. V., Wang, B., … & Wang, L. (2023). An overview of surface modification, a way toward fabrication of nascent biomedical Ti-6Al-4V alloys. Journal of materials research and technology, 24, 5896–5921. https://doi.org/10.1016/j.jmrt.2023.04.046

  17. [17] Xu, J., Zhang, J., Shi, Y., Tang, J., Huang, D., Yan, M., & Dargusch, M. S. (2022). Surface modification of biomedical Ti and Ti alloys: A review on current advances. Materials, 15(5), 1749. https://doi.org/10.3390/ma15051749

  18. [18] Senopati, G., Rahman Rashid, R. A., Kartika, I., & Palanisamy, S. (2023). Recent development of low-cost β-Ti alloys for biomedical applications: a review. Metals, 13(2), 194. https://doi.org/10.3390/met13020194

  19. [19] Bassey, M., Offiong, U., & Ikpe, A. (2023). Finite element simulation for thermo-mechanical transient behavior of mild steel plate agglutinated by gas tungsten arc welding (GTAW) technique. Journal of materials engineering, structures and computation, 2(3), 549–559. https://doi.org/10.5281/zenodo.8306756

  20. [20] Ikpe, A. E., & Bassey, M. O. (2023). Modelling and simulation of transient thermal stress distribution across AISI 1018 flat plates at variable welding temperature regime. Journal of materials engineering, structures and computation, 2(3). https://journals.nipes.org/index.php/jmsc/article/view/672

  21. [21] Omoniyi, P. O., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2021). An overview of TIG welding of Ti6Al4V: recent developments. Journal of composite & advanced materials/revue des composites et des matériaux avancés, 31(5), 265–274. https://doi.org/10.18280/rcma.310501

  22. [22] Vijayakumar, V., Sonar, T., Venkatesan, S., Negemiya, A., & Ivanov, M. (2024). Influence of IP-TIG welding parameters on weld bead geometry, tensile properties, and microstructure of Ti6Al4V alloy joints. Materials testing, 66(9), 1464. https://doi.org/ 10.1515/mt-2023-0237

  23. [23] Devore, J. L., Berk, K. N., & Carlton, M. A. (2021). Statistical intervals based on a single sample. In Modern mathematical statistics with applications (pp. 451–499). Springer. https://doi.org/10.1007/978-3-030-55156-8_8

  24. [24] Chang, J., Cao, R., & Yan, Y. (2019). The joining behavior of titanium and Q235 steel joined by cold metal transfer joining technology. Materials, 12(15), 2413. https://doi.org/10.3390/ma12152413

  25. [25] Andersson, J. (2020). Welding metallurgy and weldability of superalloys. Metals, 10(1), 143. https://doi.org/10.3390/met10010143

  26. [26] Havia, J., Lipiäinen, K., Ahola, A., & Björk, T. (2024). Fatigue design of stress relief grooves to prevent weld root fatigue in butt-welded cast steel to ultra-high-strength steel joints. Welding in the world, 68, 1–14. https://doi.org/10.1007/s40194-024-01797-3

  27. [27] Nandagopal, K., & Kailasanathan, C. (2016). Analysis of mechanical properties and optimization of gas tungsten Arc welding (GTAW) parameters on dissimilar metal titanium (6Al4V) and aluminium 7075 by Taguchi and ANOVA techniques. Journal of alloys and compounds, 682, 503–516. https://doi.org/10.1016/j.jallcom.2016.05.006

  28. [28] Kumar, S., Singh, P. K., & D Patel, S. B. P. (2017). Optimization of welding parameters of GTAW using response surface methodology. Scientific bulletin series-d, 79(3), 119–132. http://www.scientificbulletin.upb.ro/rev_docs_arhiva/rezb55_984682.pdf

  29. [29] Kumar, S., Singh, P. K., Patel, D., & Prasad, S. B. (2019). Experimental investigation and optimization of welding parameters on tig welding of stainless steel aisi 304 plates. Innovation in materials science and engineering: proceedings of icemit 2017, (pp. 91–102). https://doi.org/10.1007/978-981-13-2944-9_10

  30. [30] Khalid, M. (2019). Process parameters optimization of tungsten inert gas welding by taguchi method. 2019 advances in science and engineering technology international conferences (ASET). (pp. 1–5). https://doi.org/10.1109/ICASET.2019.8714210

  31. [31] Dewangan, S., Mohapatra, S. K., & Sharma, A. (2020). An assessment into mechanical properties and microstructural behavior of TIG welded Ti-6Al-4V titanium alloy. Grey systems: theory and application, 10(3), 281–292. https://doi.org/10.1108/GS-11-2019-0052

  32. [32] Miao, Y., Ma, Z., Yang, X., Liu, J., & Han, D. (2018). Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing. Journal of materials processing technology, 260, 104–111. https://doi.org/10.1016/j.jmatprotec.2018.05.019

  33. [33] Zhang, Y., Huang, J., Ye, Z., & Cheng, Z. (2017). An investigation on butt joints of Ti6Al4V and 5A06 using MIG/TIG double-side arc welding-brazing. Journal of manufacturing processes, 27, 221–225. https://doi.org/10.1016/j.jmapro.2017.05.010

  34. [34] Sen, R., Choudhury, S. P., Kumar, R., & Panda, A. (2018). A comprehensive review on the feasibility study of metal inert gas welding. Materials today: proceedings, 5(9), 17792–17801. https://doi.org/10.1016/j.matpr.2018.06.104

  35. [35] Arunkumar, S. P., Prabha, C., Saminathan, R., Khamaj, J. A., Viswanath, M., Ivan, C. K. P., … & Kumar, P. M. (2022). Taguchi optimization of metal inert gas (MIG) welding parameters to withstand high impact load for dissimilar weld joints. Materials today: proceedings, 56, 1411–1417. https://doi.org/10.1016/j.matpr.2021.11.619

  36. [36] Madavi, K. R., Jogi, B. F., & Lohar, G. S. (2022). Metal inert gas (MIG) welding process: A study of effect of welding parameters. Materials today: proceedings, 51, 690–698. https://doi.org/10.1016/j.matpr.2021.06.206

  37. [37] Cheepu, M., Venkateswarlu, D., Rao, P. N., Kumaran, S. S., & Srinivasan, N. (2019). The influence of gas tungsten arc welding parameters on mechanical and microstructure properties of the tc4 titanium alloy. Materials science forum (pp. 895–900). https://doi.org/10.4028/www.scientific.net/MSF.969.895

  38. [38] Szwajka, K., Zielińska-Szwajka, J., & Trzepieciński, T. (2024). The influence of the shielding-gas flow rate on the mechanical properties of TIG-welded butt joints of commercially pure grade 1 titanium. Materials, 17(5), 1217. https://doi.org/10.3390/ma17051217

  39. [39] Brykov, M. N., Petryshynets, I., Džupon, M., Kalinin, Y. A., Efremenko, V. G., Makarenko, N. A., … & Kováč, F. (2020). Microstructure and properties of heat affected zone in high-carbon steel after welding with fast cooling in water. Materials, 13(22), 5059. https://doi.org/10.3390/ma13225059

  40. [40] Barriobero-Vila, P., Requena, G., Warchomicka, F., Stark, A., Schell, N., & Buslaps, T. (2015). Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy. Journal of materials science, 50(3), 1412-1426. https://doi.org/10.1007/s10853-014-8701-6

  41. [41] Bak, G. R., Won, J. W., Choe, H.-J., Park, C. H., & Hyun, Y. T. (2019). Effect of iron content on β→α phase transformation behavior of Ti-5Al-xFe (x=1, 2.5, 4) alloys during continuous cooling. Journal of materials research and technology, 8(3), 2887–2897. https://doi.org/10.1016/j.jmrt.2019.02.020

  42. [42] Ogunmefun, O. A., Bayode, B. L., Jamiru, T., & Olubambi, P. A. (2023). A critical review of dispersion strengthened titanium alloy fabricated through spark plasma sintering techniques. Journal of alloys and compounds, 960, 170407. https://doi.org/10.1016/j.jallcom.2023.170407

  43. [43] Williams, J. C., & Boyer, R. R. (2020). Opportunities and issues in the application of titanium alloys for aerospace components. Metals, 10(6), 705. https://doi.org/10.3390/met10060705

  44. [44] Thesiya, D., Dave, J., Rajurkar, A., & Prajapati, V. (2015). Study on influence of edm process parameters during machining of Ti-6Al-4V. Journal of manufacturing technology research, 7(1/2), 53. https://encr.pw/VVfQ8

  45. [45] Elshaer, R. N., & Ibrahim, K. M. (2022). Applications of titanium alloys in aerospace manufacturing: a brief review. The bulletin tabbin institute for metallurgical studies (TIMS), 111(1), 60–69. https://doi.org/10.21608/tims.2023.174504.1007

  46. [46] Tomchik, G., & Dunder, T. G. (2006). Overview of titanium applications on advanced commercial transports. AeroMat conference, unpublished research. https://l1nq.com/TxPWN

  47. [47] Moiseyev, V. N. (2005). Titanium alloys: Russian aircraft and aerospace applications. CRC press. https://doi.org/10.1201/9781420037678

  48. [48] Anil Kumar, V., Gupta, R. K., Prasad, M., & Narayana Murty, S. V. S. (2021). Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review. Journal of materials research, 36, 689–716. https://doi.org/10.1557/s43578-021-00104-w

  49. [49] Antunes, R. A., Salvador, C. A. F., & Oliveira, M. C. L. de. (2018). Materials selection of optimized titanium alloys for aircraft applications. Materials research, 21, e20170979. https://doi.org/10.1590/1980-5373-MR-2017-0979

  50. [50] Veiga, C., Davim, J. P., Loureiro, A. J. R., & others. (2012). Properties and applications of titanium alloys: A brief review. Reviews on advanced materials science, 32(2), 133–148.

  51. [51] Cotton, J. D., Briggs, R. D., Boyer, R. R., Tamirisakandala, S., Russo, P., Shchetnikov, N., & Fanning, J. C. (2015). State of the art in beta titanium alloys for airframe applications. Jom, 67(6), 1281–1303. https://doi.org/10.1007/s11837-015-1442-4

  52. [52] Tiwary, A., Kumar, R., & Chohan, J. S. (2022). A review on characteristics of composite and advanced materials used for aerospace applications. Materials today: proceedings, 51, 865–870. https://doi.org/10.1016/j.matpr.2021.06.276

  53. [53] Khatarkar, S., Rao, D. J., & Jha, S. K. (2021). Indigenous development of titanium compressor blade for turbofan engine. Journal of aerospace sciences and technologies, 250–266. https://www.researchgate.net/publication/283863116

  54. [54] Hémery, S., & Villechaise, P. (2017). Influence of $β$ anisotropy on deformation processes operating in Ti-5Al-5Mo-5V-3Cr at room temperature. Acta materialia, 141, 285–293. https://doi.org/10.1016/j.actamat.2017.09.023

  55. [55] Huet, A., Naït Ali, A., Giroud, T., Villechaise, P., & Hémery, S. (2022). Onset of plastic deformation and strain localization in relation to β phase in metastable β and dual phase Ti alloys. Acta materialia, 240, 118348. https://doi.org/ 10.1016/j.actamat.2022.118348

  56. [56] Zhang, X., Mei, Y., Lv, Y., Chen, C., & Zhou, K. (2018). Anisotropy of the microstructure and tensile properties in Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy during hot rolling and heat treatment. Metals, 8(11), 904. https://doi.org/10.3390/met8110904

  57. [57] Kumar, V. A., Gupta, R. K., Chakravadhanula, V. S. K., Rao, A. G., Prasad, M. J. N. V., & Murty, S. V. S. N. (2019). Effect of test temperature on tensile behavior of Ti-5Al-5V-2Mo-1Cr-1Fe (α+ β) titanium alloy with initial microstructures in hot forged and heat treated conditions. Metallurgical and materials transactions a, 50(6), 2702-2719. https://doi.org/10.1007/s11661-019-05207-y

  58. [58] Lhadi, S., Chini, M. R., Richeton, T., Gey, N., Germain, L., & Berbenni, S. (2018). Micromechanical modeling of the elasto-viscoplastic behavior and incompatibility stresses of β-Ti alloys. Materials, 11(7), 1227. https://doi.org/10.3390/ma11071227

  59. [59] Lhadi, S., Richeton, T., Gey, N., Berbenni, S., Perroud, O., & Germain, L. (2020). Elasto-viscoplastic tensile behavior of as-forged Ti-1023 alloy: Experiments and micromechanical modeling. Materials Science and Engineering: A, 787, 139491. https://doi.org/10.1016/j.msea.2020.139491

  60. [60] Li, P., Chen, S., Dong, H., Ji, H., Li, Y., Guo, X., … & Han, X. (2020). Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding. Journal of manufacturing processes, 49, 385–396. https://doi.org/10.1016/j.jmapro.2019.09.047

  61. [61] Dong, R., Zhang, X., Li, C., Zhao, Y., Tian, J., Wu, L., & Hou, H. (2022). Correlation between the mechanical properties and the <110> texture in a hot-rolled near $β$ titanium alloy. Journal of materials science & technology, 97, 165–168. https://api.semanticscholar.org/CorpusID:237652493

  62. [62] Wassermann, G., & Grewen, J. (1962). Textures of metallic materials. Springer-verlag, German, Berlin, 181. https://doi.org/10.1007/978-3-662-13128-2

  63. [63] Engler, O., Randle, V., & others. (2003). Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. https://digital.library.tu.ac.th/tu_dc/frontend/Info/item/dc:10625

  64. [64] Suwas, S., & Ray, R. K. (2014). Crystallographic texture of materials. Springer. https://doi.org/10.1007/978-1-4471-6314-5

  65. [65] Banerjee, D., & Williams, J. C. (2013). Perspectives on titanium science and technology. Acta materialia, 61(3), 844–879. https://doi.org/10.1016/j.actamat.2012.10.043

  66. [66] Bewlay, B. P., Nag, S., Suzuki, A., & Weimer, M. J. (2016). TiAl alloys in commercial aircraft engines. Materials at high temperatures, 33(4–5), 549–559. https://doi.org/10.1080/09603409.2016.1183068

  67. [67] Nie, X., He, W., Cao, Z., Song, J., Li, X., Pang, Z., & Yan, X. (2021). Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy. Materials science and engineering: a, 822, 141658. https://doi.org/10.1016/j.msea.2021.141658

  68. [68] Wang, Y., Zhu, Z., Sha, A., & Hao, W. (2023). Low cycle fatigue life prediction of titanium alloy using genetic algorithm-optimized BP artificial neural network. International journal of fatigue, 172, 107609. https://doi.org/10.1016/j.ijfatigue.2023.107609

  69. [69] Guo, Y., Wang, S., & Liu, G. (2024). Creep-fatigue life prediction of a titanium alloy deep-sea submersible using a continuum damage mechanics-informed BP neural network model. Ocean engineering, 311, 118826. https://doi.org/10.1016/j.oceaneng.2024.118826

  70. [70] Jinlong, W., Wenjie, P., Jing, Y., Jingsi, W., Mingchao, D., & Yuanliang, Z. (2021). Effect of surface roughness on the fatigue failure and evaluation of TC17 titanium alloy. Materials science and technology, 37(3), 301–313. https://doi.org/10.1080/02670836.2021.1885777

  71. [71] Tukahirwa, G., & Wandera, C. (2023). Influence of process parameters in gas-metal arc welding (GMAW) of carbon steels. In Welding-materials, fabrication processes, and industry 5.0. IntechOpen. https://doi.org/10.5772/intechopen.1002730

  72. [72] Ikpe, A. E., Ikechukwu, O., & Ikpe, E. (2017). Effects of arc voltage and welding current on the arc length of tungsten inert gas welding (TIG). International journal of engineering and technology (IJET), 3(4), 213-221. https://hdl.handle.net/11363/556

  73. [73] Owunna, I. B., Ikpe, A. E., & Ohwoekevwo, J. U. (2022). Application of SEM/EDS in fractographic investigation of TIG welded AISI 1020 fusion zones at distinct welding current steps. ARID zone journal of engineering, technology & environment, 18(2), 1596–2644. https://www.ajol.info/index.php/azojete/article/view/239702/226560

  74. [74] Hölscher, L. V., Hassel, T., & Maier, H. J. (2022). Detection of the contact tube to working distance in wire and arc additive manufacturing. The international journal of advanced manufacturing technology, 120(1), 989–999. https://doi.org/10.1007/s00170-022-08805-0

  75. [75] Sato, Y., Ogino, Y., & Sano, T. (2024). Process parameters and their effect on metal transfer in gas metal arc welding: a driving force perspective. Welding in the world, 68(4), 905–913. https://doi.org/10.1007/s40194-023-01670-9

  76. [76] Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Qaban, A., … & Manladan, S. M. (2020). Current research and development status of dissimilar materials laser welding of titanium and its alloys. Optics & laser technology, 126, 106090. https://doi.org/10.1016/j.optlastec.2020.106090

  77. [77] Messler Jr, R. W. (2019). A Practical guide to welding solutions: overcoming technical and material-specific issues. John Wiley & Sons. https://books.google.com/books?id=VvaFDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false

  78. [78] Tolvanen, S. (2018). Welding of Ti-6Al-4V: influence of welding process and alloy composition on microstructure and properties [Thesis]. https://research.chalmers.se/en/publication/504433

  79. [79] Song, Z., Wu, S., Hu, Y., Kang, G., Fu, Y., & Xiao, T. (2018). The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints. Acta metallurgica sinica, 54(8), 1131–1140. https://doi.org/10.11900/0412.1961.2017.00448

  80. [80] Yi, H. J., Lee, Y. J., & Lee, K. O. (2016). TIG dressing effects on weld pores and pore cracking of titanium weldments. Metals, 6(10), 243. https://doi.org/10.3390/met6100243

  81. [81] Sen, M., & Kurt, M. (2022). Laser and TIG welding of additive manufactured Ti-6Al-4V parts. Materials testing, 64(5), 656–666. https://doi.org/10.1515/mt-2021-2165

  82. [82] Chen, S., Luo, S., Yu, H., Geng, H., Xu, G., Li, R., & Tian, Y. (2020). Effect of beam defocusing on porosity formation in laser-MIG hybrid welded TA2 titanium alloy joints. Journal of manufacturing processes, 58, 1221–1231. https://doi.org/10.1016/j.jmapro.2020.09.026

  83. [83] Junaid, M., Khan, F. N., Rahman, K., & Baig, M. N. (2017). Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5 Sn alloy. Optics & laser technology, 97, 405–419. https://doi.org/ 10.1016/j.optlastec.2017.07.010

  84. [84] J. X. Zhang, Y. X., & Gong, S. L. (2005). Residual welding stresses in laser beam and tungsten inert gas weldments of titanium alloy. Science and technology of welding and joining, 10(6), 643–646. https://doi.org/10.1179/174329305X48374

  85. [85] Łagoda, T., & Głowacka, K. (2020). Fatigue life prediction of welded joints from nominal system to fracture mechanics. International journal of fatigue, 137, 105647. https://doi.org/10.1016/j.ijfatigue.2020.105647

  86. [86] Zhan, Y., Zhang, E., Ge, Y., & Liu, C. (2018). Residual stress in laser welding of TC4 titanium alloy based on ultrasonic laser technology. Applied sciences, 8(10), 1997. https://doi.org/10.3390/app8101997

  87. [87] Xu, L. Y., Zhu, J., Jing, H. Y., Zhao, L., Lv, X. Q., & Han, Y. D. (2016). Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti-6Al-4V joints. Materials science and engineering: a, 673, 503–510. https://doi.org/10.1016/j.msea.2016.07.101

  88. [88] Liu, J., Zheng, J., Fu, B., Bu, L., Li, R., & Liu, S. (2023). Thermo-mechanical study of TIG welding of Ti-6Al-4V for residual stresses considering solid state phase transformation. Metals, 13(5), 1001. https://doi.org/10.3390/met13051001

  89. [89] Li, Y., Wu, A., Li, Q., Zhao, Y., Zhu, R., & Wang, G. (2019). Effects of welding parameters on weld shape and residual stresses in electron beam welded Ti2AlNb alloy joints. Transactions of nonferrous metals society of china, 29(1), 67–76. https://doi.org/10.1016/S1003-6326(18)64916-7

  90. [90] Wang, L., & Qian, X. (2022). Welding residual stresses and their relaxation under cyclic loading in welded S550 steel plates. International journal of fatigue, 162, 106992. https://doi.org/10.1016/j.ijfatigue.2022.106992

  91. [91] Wang, L., & Qian, X. (2024). Effects of pre-tension and fatigue loadings on the evolution of welding residual stresses in welded plates. Engineering structures, 301, 117272. https://doi.org/10.1016/j.engstruct.2023.117272

  92. [92] Hemmesi, K., Mallet, P., & Farajian, M. (2020). Numerical evaluation of surface welding residual stress behavior under multiaxial mechanical loading and experimental validations. International journal of mechanical sciences, 168(15), 105127. https://doi.org/10.1016/j.ijmecsci.2019.105127

Published

2024-09-30

How to Cite

Oboh, A. E., Bassey, M. O., & Ikpe, A. E. (2024). Comprehensive study on the effects of TIG welding parameters on the microstructure and mechanical properties of titanium alloys: A review. Mechanical Technology and Engineering Insights, 1(1), 53-70. https://doi.org/10.48313/mtei.v1i1.24

Similar Articles

You may also start an advanced similarity search for this article.