Effects of Gum Arabic as binder on the physico-mechanical properties of briquettes made from corn cob
Abstract
This study presents the effect of gum Arabic as a binder on the physical and mechanical properties of briquette made from corn cob. The corn cobs were charred and mixed with different concentrations (0%, 5%, 10%, and 20%) of gum Arabic to form a paste. The paste was compacted under 0.215 MPa for 5 minutes in a manual press to produce a briquette. The physical tests, which were comprised of density, shatter resistance, water resistance, and compressive tests, were carried out. The results demonstrated a significant increase in the density (0.63gm-3 compressed density, 0.42 gm-3), high shatter resistance index (99.87%), good water resistance index (85.52%) and good compressive strength (3.7 MPa) in comparison with the non-binder briquette. The study shows that the gum Arabic as a binder enhanced the qualities of the briquette in strength and durability.
Keywords:
Binder, Briquette, Corn cobs, Gum Arabic, StrengthReferences
- [1] Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review. Bioresource technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064
- [2] Achinas, S., & Euverink, G. J. W. (2016). Theoretical analysis of biogas potential prediction from agricultural waste. Resource-efficient technologies, 2(3), 143–147. https://doi.org/10.1016/j.reffit.2016.08.001
- [3] Jena, S., & Singh, R. (2022). Agricultural crop waste materials-A potential reservoir of molecules. Environmental research, 206, 112284. https://doi.org/10.1016/j.envres.2021.112284
- [4] Kpalo, S. Y., & Zainuddin, M. F. (2020). Briquettes from agricultural residues; an alternative clean and sustainable fuel for domestic cooking in Nasarawa State, Nigeria. Energy and power, 10(2), 40–47. https://doi:10.5923/j.ep.20201002.03
- [5] Eriksson, S., & Prior, M. (1990). The briquetting of agricultural wastes for fuel. Food and Agriculture Organization of the United Nations. https://www.cabidigitallibrary.org/doi/full/10.5555/19902446614
- [6] Zubairu, A., & Gana, S. A. (2014). Production and characterization of briquette charcoal by carbonization of agro-waste. Energy power, 4(2), 41–47. https://doi: 10.5923/j.ep.20140402.03
- [7] Yahaya, D. B., & Ibrahim, T. G. (2012). Development of rice husk briquettes for use as fuel. Research journal in engineering and applied sciences, 1(2), 130–133. https://citeseerx.ist.psu.edu/document?repid
- [8] Suryaningsih, S., Nurhilal, O., Yuliah, Y., & Salsabila, E. (2018). Fabrication and characterization of rice husk charcoal bio briquettes. The 1st international conference and exhibition on powder technology indonesia (ICEPTI). (Vol. 1927). https://doi.org/10.1063/1.5021237
- [9] Ahmad, R. K., Sulaiman, S. A., Yusup, S., Dol, S. S., Inayat, M., & Umar, H. A. (2022). Exploring the potential of coconut shell biomass for charcoal production. Ain shams engineering journal, 13(1), 101499. https://doi.org/10.1016/j.asej.2021.05.013
- [10] Lawal, O. J., Atanda, T. A., Ayanleye, S. O., & Iyiola, E. A. (2019). Production of biomass briquettes using coconut husk and male inflorescence of elaeis guineensis. Journal of energy research and reviews, 3(2), 1–9. https://d1wqtxts1xzle7.cloudfront.net/73372417/56470-libre.pdf?1634893270
- [11] Oyelaran, O. A., Bolaji, B. O., Waheed, M. A., & Adekunle, M. F. (2015). Characterization of briquettes produced from groundnut shell and waste paper admixture. Iranica journal of energy & environment, 6(1). https://doi.org/10.5829/idosi.ijee.2015.06.01.07
- [12] Bonsu, B. O., Takase, M., & Mantey, J. (2020). Preparation of charcoal briquette from palm kernel shells: Case study in Ghana. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05266
- [13] Adetogun, A. C., Ogunjobi, K. M., & Are, D. B. (2014). Combustion properties of briquettes produced from maize cob of different particle sizes. Journal of research in forestry, wildlife and environment, 6(1), 28–38. https://www.ajol.info/index.php/jrfwe/article/view/104137
- [14] Okot, D. K., Bilsborrow, P. E., & Phan, A. N. (2018). Effects of operating parameters on maize COB briquette quality. Biomass and bioenergy, 112, 61–72. https://doi.org/10.1016/j.biombioe.2018.02.015
- [15] Ojediran, J. O., Adeboyejo, K., Adewumi, A. D., & Okonkwo, C. E. (2020). Evaluation of briquettes produced from maize cob and stalk. IOP conference series: earth and environmental science (Vol. 445, p. 12052). IOP Publishing. https://doi.org/10.1088/1755-1315/445/1/012052
- [16] Mitchual, S. J., Frimpong-Mensah, K., Darkwa, N. A., & Akowuah, J. O. (2013). Briquettes from maize cobs and Ceiba pentandra at room temperature and low compacting pressure without a binder. International journal of energy and environmental engineering, 4, 1–7. https://doi.org/10.1186/2251-6832-4-38
- [17] Wilaipon, P. (2007). Physical characteristics of maize cob briquette under moderate die pressure. American journal of applied sciences, 4(12), 995–998. https://www.cabidigitallibrary.org/doi/full/10.5555/20093011822
- [18] Wilaipon, P. (2007). The effects of moderate die pressure on maize cob briquettes: A case study in Phitsanulok, Thailand. Journal on energy conversion and management, 43, 167–174. https://www.thesustainabilitysociety.org.nz/conference/2004/Session5/65 Wilaipon.pdf
- [19] Kaliyan, N., & Morey, R. V. (2010). Densification characteristics of corn cobs. Fuel processing technology, 91(5), 559–565. https://doi.org/10.1016/j.fuproc.2010.01.001
- [20] Ellison, G., & Stanmore, B. R. (1981). High strength binderless brown coal briquettes part I. Production and properties. Fuel processing technology, 4(4), 277–289. https://doi.org/10.1016/0378-3820(81)90004-7
- [21] Olugbade, T. O., & Ojo, O. T. (2021). Binderless briquetting technology for lignite briquettes: A review. Energy, ecology and environment, 6, 69–79. https://doi.org/10.1007/s40974-020-00165-3
- [22] Zhang, Y., Chen, X., Wu, J., Wang, S., Shao, Z., Miao, Z., & Xiao, L. (2020). Binderless briquetting of lignite by the mechanical thermal expression process. International journal of coal preparation and utilization. https://doi.org/10.1080/19392699.2017.1363739
 
						 
																	 
							